Principles of Programming Languages Answers for small examination 2

Problem 1 Show the type consistency of the following program fragment, which is written in the subset of C language presented in the lecture, according to (1) and (2).
(Answer)

```
int *p;
int x[3];
p = x;
```

(1) Rewrite the variable declarations int $* \mathrm{p}$; and int $\mathrm{x}[3]$; in the postfix notation presented in the lecture.
(Answer)

$$
\begin{aligned}
& \mathrm{p}: \operatorname{int} * \\
& \mathrm{x}: \text { int }[3]
\end{aligned}
$$

(2) Show the type consistency of the assignment expression $\mathrm{p}=\mathrm{x}$ by applying the inference rules to the declarations of p and x in the postfix notation obtained in (1).
(Answer)

$$
\frac{p: \operatorname{int} * \frac{x: \operatorname{int}[3]}{x: \operatorname{int} \&}}{p=x: \operatorname{int} \&}
$$

Problem 2 A lambda expression $(\lambda x . \lambda y . x)((\lambda z . z) w)$ can be transformed to $(\lambda y . w)$ by applying the β reductions. Write the each step of the β reductions. (Although there are more than one sequences of β reductions, write one of them.)
(Answer 1)

$$
(\lambda x \cdot \lambda y \cdot x)((\lambda z \cdot z) w) \longrightarrow \underset{\beta}{\longrightarrow}(\lambda x \cdot \lambda y \cdot x) w \xrightarrow[\beta]{\longrightarrow} \lambda y \cdot w
$$

(Answer 2)

$$
(\lambda x \cdot \lambda y \cdot x)((\lambda z \cdot z) w) \longrightarrow \beta \quad \lambda y \cdot((\lambda z \cdot z) w) \xrightarrow[\beta]{\longrightarrow} \lambda y \cdot w
$$

Problem 3 Write the output to the display when executing the following program in

C++.

```
#include <stdio.h>
class Shape {
public:
    virtual void draw (void) {
                printf ("Shape\n");
    }
};
class Box : public Shape {
    void draw (void) {
        printf ("Box\n");
    }
};
```

(Answer)
Box

Problem 4

Show the meaning of the following programs (1) and (2) by using the rules presented in the lecture. Note that the programs are in the small subset of C presented in the lecture. Let the states before executing the programs both to be $\sigma=\{(\mathrm{X}, 3),(\mathrm{Y}, 1),(\mathrm{Z}, 0)\}$.
(1) $\mathrm{Z}=(\mathrm{X}+4)$;

$$
\frac{\langle\mathrm{X}, \sigma>\rightarrow 3 \quad<4, \sigma>\rightarrow 4}{\frac{<(\mathrm{X}+4), \sigma>\rightarrow 7}{<\mathrm{Z}=(\mathrm{X}+4) ;, \sigma>\rightarrow \sigma[7 / Z]}}
$$

So in the state σ, after executing the program $\mathrm{Z}=(\mathrm{X}+4)$; the state becomes as follows.

$$
\sigma[7 / \mathrm{Z}]=\{(\mathrm{X}, 3),(\mathrm{Y}, 1),(\mathrm{Z}, 7)\}
$$

(2) while(Y) $\{\mathrm{Y}=(\mathrm{Y}-1) ;\}$

$$
\begin{array}{clc}
& \frac{<\mathrm{Y}, \sigma>\rightarrow 1 \quad<1, \sigma>\rightarrow 1}{<(\mathrm{Y}-1), \sigma>\rightarrow 0} & <\mathrm{Y}, \sigma[0 / \mathrm{Y}]>\rightarrow 0 \\
\frac{\mathrm{Y}, \sigma>\rightarrow 1}{} \frac{<\mathrm{Y}=(\mathrm{Y}-1) ;, \sigma>\rightarrow \sigma[0 / \mathrm{Y}]}{} \quad \frac{\text { while }(\mathrm{Y})\{\mathrm{Y}=(\mathrm{Y}-1) ;\}, \sigma[0 / \mathrm{Y}]>\rightarrow \sigma[0 / \mathrm{Y}]}{<\operatorname{while}(\mathrm{Y})\{\mathrm{Y}=(\mathrm{Y}-1) ;\}, \sigma>\rightarrow \sigma[0 / \mathrm{Y}]}
\end{array}
$$

So in the state σ, after executing the program while $(\mathrm{Y})\{\mathrm{Y}=(\mathrm{Y}-1) ;\}$ the state becomes as follows.

$$
\sigma[0 / \mathrm{Y}]=\{(\mathrm{X}, 3),(\mathrm{Y}, 0),(\mathrm{Z}, 0)\}
$$

