
Principles of Programming Languages

Small examination 2

Student ID: Name:

Problem 1 Show the type consistency of the following program fragment, which is

written in the subset of C language presented in the lecture, according to (1) and (2).

int *p;

int x[3];

p = x;

(1) Rewrite the variable declarations int *p; and int x[3]; in the postfix notation

presented in the lecture.

(2) Show the type consistency of the assignment expression p=x by applying the infer-

ence rules to the declarations of p and x in the postfix notation obtained in (1).

Problem 2 A lambda expression (λx. λy. x) ((λz. z) w) can be transformed to (λy. w)

by applying the β reductions. Write the each step of the β reductions. (Although there

are more than one sequences of β reductions, write one of them.)

1



Problem 3 Write the output to the display when executing the following program in

C++. � �
#include <stdio.h>
class Shape {
public:

virtual void draw (void) {
printf ("Shape\n");

}
};
class Box : public Shape {

void draw (void) {
printf ("Box\n");

}
};� �

� �
int main (void) {

Shape *s;
s = new Box ();
s->draw();
return 0;

}� �

Problem 4

Show the meaning of the following programs (1) and (2) by using the rules presented in

the lecture. Note that the programs are in the small subset of C presented in the lecture.

Let the states before executing the programs both to be σ = {(X, 3), (Y, 1), (Z, 0)}.

(1) Z=(X+4);

(2) while(Y){Y=(Y-1);}

2



Rules presented in the lecture Typing rules

• Rules for function calls, pointers, arrays

e : τ [n]

e[i] : τ

e : τ()

e() : τ

e : τ∗
∗ e : τ

e : τ [n]

e : τ&

• Rule for assignment operator =, where e is an l-value expresssion and not a constant.

e : τ e′ : τ
e = e′ : τ

• Rule for the & operator where the outermost part of τ is not &.

e : τ
&e : τ&

e : τ&
∗ e : τ

e : τ ∗ e′ : τ&
e = e′ : τ&

Rules for lambda calculus

• β reductions
(λx.M) N −−−→

β
M [N/x]

M −−−→
β

N

λx.M −−−→
β

λx.N

M −−−→
β

N

MP −−−→
β

NP

M −−−→
β

N

PM −−−→
β

PN

• Substitutions

c[N/x] = c

x[N/x] = N

x[N/y] = x (x 6= y)

(λy.M)[N/x] =


λy.M if x = y

λy.(M [N/x]) if x 6= y, y /∈ FV (N)

λz.((M [z/y])[N/x]) if x 6= y, z 6= x, y ∈ FV (N),

z /∈ FV (M), z /∈ FV (N)

(M1M2)[N/x] = (M1[N/x])(M2[N/x])

• Free variables
FV (c) = {}
FV (x) = {x}

FV (λx.M) = FV (M) \ {x}
FV (M1M2) = FV (M1) ∪ FV (M2)

3



Operational semantics for the small subset of C

• Rules for arithmetic expressions

– Sequences of numbers: < n, σ > → m where m is an integer represented by

the sequence of numbers n in the decimal representation.

– Variables: < x, σ > → σ(x)

– Addition:

< a1, σ > → m1 < a2, σ > → m2

< (a1 + a2), σ > → m
(m is the sum of m1 and m2.)

– Subtraction:

< a1, σ > → m1 < a2, σ > → m2

< (a1 − a2), σ > → m
(m is the difference of m1 and m2.)

– Multiplication:

< a1, σ > → m1 < a2, σ > → m2

< (a1 ∗ a2), σ > → m
(m is the product of m1 and m2.)

• Rules for statements

– Assignments:
< a, σ > → m

< x = a; , σ > → σ[m/x]

where σ[m/x] is defined as follows.

(σ[m/x])(y) =

{
m if y = x

σ(y) if y 6= x

– Sequences:

< c1, σ > → σ1 < c2, σ1 > → σ2

< c1 c2, σ > → σ2

– while statements:
< a, σ > → 0

< while (a) {c}, σ > → σ

< a, σ > → m < c, σ > → σ1 < while (a) {c}, σ1 > → σ2

< while (a) {c}, σ > → σ2
(if m 6= 0)

4


