Principles of Programming Languages
 Small examination 2

Student ID:
Name:

Problem 1 Show the type consistency of the following program fragment, which is written in the subset of C language presented in the lecture, according to (1) and (2).

```
int *p;
int x[3];
p = x;
```

(1) Rewrite the variable declarations int $* \mathrm{p}$; and int $\mathrm{x}[3]$; in the postfix notation presented in the lecture.
(2) Show the type consistency of the assignment expression $\mathrm{p}=\mathrm{x}$ by applying the inference rules to the declarations of p and x in the postfix notation obtained in (1).

Problem 2 A lambda expression $(\lambda x . \lambda y . x)((\lambda z . z) w)$ can be transformed to $(\lambda y . w)$ by applying the β reductions. Write the each step of the β reductions. (Although there are more than one sequences of β reductions, write one of them.)

Problem 3 Write the output to the display when executing the following program in C++.

```
#include <stdio.h>
class Shape {
public:
    virtual void draw (void) {
        printf ("Shape\n");
    }
};
class Box : public Shape {
    void draw (void) {
        printf ("Box\n");
    }
};
```


Problem 4

Show the meaning of the following programs (1) and (2) by using the rules presented in the lecture. Note that the programs are in the small subset of C presented in the lecture. Let the states before executing the programs both to be $\sigma=\{(\mathrm{X}, 3),(\mathrm{Y}, 1),(\mathrm{Z}, 0)\}$.
(1) $\mathrm{Z}=(\mathrm{X}+4)$;
(2) while(Y) $\{\mathrm{Y}=(\mathrm{Y}-1) ;\}$

Rules presented in the lecture Typing rules

- Rules for function calls, pointers, arrays

$$
\frac{e: \tau[n]}{e[i]: \tau} \quad \frac{e: \tau()}{e(): \tau} \quad \frac{e: \tau *}{* e: \tau} \quad \frac{e: \tau[n]}{e: \tau \&}
$$

- Rule for assignment operator $=$, where e is an l-value expresssion and not a constant.

$$
\frac{e: \tau \quad e^{\prime}: \tau}{e=e^{\prime}: \tau}
$$

- Rule for the \& operator where the outermost part of τ is not \&.

$$
\frac{e: \tau}{\& e: \tau \&} \quad \frac{e: \tau \&}{* e: \tau} \quad \frac{e: \tau * e^{\prime}: \tau \&}{e=e^{\prime}: \tau \&}
$$

Rules for lambda calculus

- β reductions

$$
\begin{gathered}
(\lambda x . M) N \underset{\beta}{\longrightarrow} M[N / x] \\
M \underset{\beta}{\longrightarrow} N
\end{gathered} \begin{gathered}
M \underset{\beta}{\longrightarrow} N x . N
\end{gathered} \begin{gathered}
M P \xrightarrow[\beta]{\longrightarrow} N P
\end{gathered} \overline{P M \underset{\beta}{\longrightarrow} P N}
$$

- Substitutions

$$
\begin{aligned}
c[N / x] & =c \\
x[N / x] & =N \\
x[N / y] & =x(x \neq y) \\
(\lambda y \cdot M)[N / x] & = \begin{cases}\lambda y \cdot M & \text { if } x=y \\
\lambda y \cdot(M[N / x]) & \text { if } x \neq y, y \notin F V(N) \\
\lambda z \cdot((M[z / y])[N / x]) & \text { if } x \neq y, z \neq x, y \in F V(N), \\
& z \notin F V(M), z \notin F V(N)\end{cases} \\
\left(M_{1} M_{2}\right)[N / x] & =\left(M_{1}[N / x]\right)\left(M_{2}[N / x]\right)
\end{aligned}
$$

- Free variables

$$
\begin{aligned}
F V(c) & =\{ \} \\
F V(x) & =\{x\} \\
F V(\lambda x . M) & =F V(M) \backslash\{x\} \\
F V\left(M_{1} M_{2}\right) & =F V\left(M_{1}\right) \cup F V\left(M_{2}\right)
\end{aligned}
$$

Operational semantics for the small subset of C

- Rules for arithmetic expressions
- Sequences of numbers: $\langle n, \sigma>\rightarrow m$ where m is an integer represented by the sequence of numbers n in the decimal representation.
- Variables: $\langle x, \sigma\rangle \rightarrow \sigma(x)$
- Addition:

$$
\frac{<a_{1}, \sigma>\rightarrow m_{1}<a_{2}, \sigma>\rightarrow m_{2}}{<\left(a_{1}+a_{2}\right), \sigma>\rightarrow m}\left(m \text { is the sum of } m_{1} \text { and } m_{2} .\right)
$$

- Subtraction:

$$
\frac{<a_{1}, \sigma>\rightarrow m_{1}<a_{2}, \sigma>\rightarrow m_{2}}{<\left(a_{1}-a_{2}\right), \sigma>\rightarrow m}\left(m \text { is the difference of } m_{1} \text { and } m_{2} .\right)
$$

- Multiplication:

$$
\frac{<a_{1}, \sigma>\rightarrow m_{1}<a_{2}, \sigma>\rightarrow m_{2}}{<\left(a_{1} * a_{2}\right), \sigma>\rightarrow m}\left(m \text { is the product of } m_{1} \text { and } m_{2} .\right)
$$

- Rules for statements
- Assignments:

$$
\frac{\langle a, \sigma>\rightarrow m}{<x=a ;, \sigma>\rightarrow \sigma[m / x]}
$$

where $\sigma[m / x]$ is defined as follows.

$$
(\sigma[m / x])(y)=\left\{\begin{array}{cl}
m & \text { if } y=x \\
\sigma(y) & \text { if } y \neq x
\end{array}\right.
$$

- Sequences:

$$
\frac{<c_{1}, \sigma>\rightarrow \sigma_{1}<c_{2}, \sigma_{1}>\rightarrow \sigma_{2}}{<c_{1} c_{2}, \sigma>\rightarrow \sigma_{2}}
$$

- while statements:

$$
\begin{gathered}
\frac{<a, \sigma>\rightarrow 0}{<\text { while }(a)\{c\}, \sigma>\rightarrow \sigma} \\
<a, \sigma>\rightarrow m \quad<c, \sigma>\rightarrow \sigma_{1}<\text { while }(a)\{c\}, \sigma_{1}>\rightarrow \sigma_{2} \\
<\text { while }(a)\{c\}, \sigma>\rightarrow \sigma_{2}
\end{gathered}(\text { if } m \neq 0)
$$

