Principles of Programming Languages
 Small examination

Student ID:

Name:

Problem 1 Illustrate the quilts represented by the following expressions (1), (2), and (3) in the language Little Quilt.

```
(1) sew (turn (turn (b)), a)
(2) let
    val x = turn (b)
in
    sew (x,x)
end
(3) let
    fun unturn (x) = turn (turn (turn (x)))
    fun pile (x,y) = unturn (sew (turn (y), turn (x)))
    val aa = pile (a, turn (turn (a)))
    val bb = pile (unturn (b), turn (b))
in
    sew (aa, bb)
end
```

The meaning of a , b , turn, sew are as follows. The other constructs of Little Quilt (let expressions, val declaration, fun declaration) have the meaning explained in the lecture.

- Expressions a and b represent the quilts in Figure 1 and Figure 2 respectively.

Figure 1: The quilt that a represents
Figure 2: The quilt that b represents

- The expression turn (e) represents the quilt obtained by rotating 90 degrees to the right the quilt represented by the expression e.
- The expression sew (e_{1}, e_{2}) represents the quilt that is obtained by sewing the two quilts e_{1} and e_{2}, where e_{1} is in the left side and e_{2} is in the right side, and they must have the same height.

Problem 2 Answer the following problems about the control flow in the imperative language presented in the lecture.
(1) Illustrate the control flow of the following program fragment.

```
if x>0 then x := x - 1
else if y>0 then y := y - 1
    else y := y + 1
```

(2) Illustrate the control flow of the following program fragment.

```
x := 10;
sum := 0;
L: sum := sum + x;
x := x - 1;
if x>0 then
        goto L
```

(3) Illustrate the control flow of the following program fragment.

```
while x>0 do
        begin
            if x=3 then
                begin
                                    x := x - 1;
                                    continue
                end;
            y := y + 1;
            x := x - 1
        end
```

(4) Illustrate the control flow of the following program fragment.

```
while x>0 do
    begin
        while y>0 do
                begin
                if }x=3\mathrm{ then
                break;
                z := z + 1;
                y := y - 1
            end;
        x := x - 1
    end
```

(5) How many entries and exits does the if statement (if $x=3$ then break;) in the program fragment (4) have?

Problem 3 Derive the Hoare triples (1), (2), and (3) by using the rules presented in the lecture.
(1) $\{a=3\} a:=a+1\{a=4\}$
(2) $\{a=3\} a:=a+1 ; a:=a+2\{a=6\}$
(3) $\{a=4\}$ if $a=4$ then $a:=a+2$ else $a:=a-3\{a=6\}$
(4) $\{a=5\}$ while $a>0$ do $a:=a-1\{a=0\}$

Rules presented in the lecture

Hoare logic

$$
\begin{gathered}
\frac{\{P\} S_{1}\{Q\} \quad\{Q\} S_{2}\{R\}}{\{P\} S_{1} ; S_{2}\{R\}} \text { (composition rule) } \\
\frac{\{P \wedge E\} S_{1}\{Q\} \quad\{P \wedge \neg E\} S_{2}\{Q\}}{\{P\} \text { if } E \text { then } S_{1} \text { else } S_{2}\{Q\}} \text { (conditional rule) } \\
\frac{\{P \wedge E\} S\{P\}}{\{P\} \text { while } E \operatorname{do} S\{P \wedge \neg E\}} \text { (while rule) } \\
\frac{\overline{\{Q[E / x]\} x:=E\{Q\}} \text { (assignment axiom) }}{} \frac{P \Rightarrow P^{\prime}\left\{P^{\prime}\right\} S\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} S\{Q\}} \text { (consequence rule) }
\end{gathered}
$$

