
Principles of Programming Languages
Answers for small examination 2

Problem 1 Show the type consistency of the following program fragment, which is

written in the subset of C language presented in the lecture, according to (1) and (2).

(Answer)

int *p;

int x[3];

p = x;

(1) Rewrite the variable declarations int *p; and int x[3]; in the postfix notation

presented in the lecture.

(Answer)

p : int *

x : int [3]

(2) Show the type consistency of the assignment expression p=x by applying the infer-

ence rules to the declarations of p and x in the postfix notation obtained in (1).

(Answer)

p : int ∗
x : int [3]

x : int &

p = x : int &

Problem 2 A lambda expression (λx. λy. x) ((λz. z) w) can be transformed to (λy. w)

by applying the β reductions. Write the each step of the β reductions. (Although there

are more than one sequences of β reductions, write one of them.)

(Answer 1)

(λx. λy. x) ((λz. z) w) −−−→
β

(λx. λy. x) w −−−→
β

λy. w

(Answer 2)

(λx. λy. x) ((λz. z) w) −−−→
β

λy. ((λz. z) w) −−−→
β

λy. w

Problem 3 Write the output to the display when executing the following program in

C++.

#include <stdio.h>

class B {

public:

virtual char f() { return ’B’;}

char g() { return ’B’; }

1



char testF(B *b) { return b->f();}

char testG(B *b) { return b->g();}

};

class D : public B {

public:

char f() { return ’D’;}

char g() { return ’D’;}

};

int main(void) {

D *d = new D;

printf("%c%c\n", d->testF(d), d->testG(d));

return 0;

}

(Answer)

DB

Problem 4

Show the meaning of the following programs (1) and (2) by using the rules presented in

the lecture. Note that the programs are in the small subset of C presented in the lecture.

Let the states before executing the programs both to be σ = {(X, 3), (Y, 1), (Z, 0)}.

(1) Z=(X+4);

< X, σ > → 3 < 4, σ > → 4

< (X + 4), σ > → 7

< Z = (X + 4);, σ > → σ[7/Z]

So in the state σ, after executing the program Z=(X+4); the state becomes as follows.

σ[7/Z] = {(X, 3), (Y, 1), (Z, 7)}

(2) while(Y){Y=(Y-1);}

< Y, σ > → 1

< Y, σ > → 1 < 1, σ > → 1
< (Y− 1), σ > → 0

< Y = (Y− 1);, σ > → σ[0/Y]
< Y, σ[0/Y] > → 0

< while(Y){Y = (Y− 1); }, σ[0/Y] > → σ[0/Y]
< while(Y){Y = (Y− 1); }, σ > → σ[0/Y]

So in the state σ, after executing the program while(Y){Y=(Y-1);} the state be-

comes as follows.

σ[0/Y] = {(X, 3), (Y, 0), (Z, 0)}

2


