# Supplement for the 3rd lecture 

## Department of Information Science and Engineering Isao Sasano

In this document we explain some supplementary explanation to Hoare triples and substitutions.

## 1 A derivation of the Hoare triple in p. 17

We show a derivation of the Hoare triple while true do $\mathrm{x}:=1$ in p .17 as follows.

$$
\begin{aligned}
& \frac{\text { true } \Rightarrow \text { true } \wedge \text { true } \overline{\{\text { true }\} x:=1\{\text { true }\}}}{\{\text { true } \wedge \text { true }\} x:=1 \text { (assign) }} \text { (conseq) } \\
& \frac{\{\text { true }\}}{\text { while true do } x:=1\{\text { true } \wedge \neg \text { true }\}}(\text { while }) \text { true } \wedge \neg \text { true } \Rightarrow \text { false } \\
& \{\text { true }\} \text { while true do } x:=1\{\text { false }\}
\end{aligned}
$$

In the above derivation tree, $\{$ true $\} x:=1\{$ true $\}$ holds from the assignment axiom since

$$
\operatorname{true}[1 / \mathrm{x}]=\operatorname{true}
$$

holds. In the above derivation we abbreviate assignment axiom as assign, consequence rule as conseq, while rule as while.

## 2 Definition of substitution

Here we define substitution for logical expression, which is used in the assignment axiom. Firstly, we assume that the logical expressions used in this lecture as follows, although it is not explicitly mentioned in the slides because
of the lack of space.

$$
\begin{aligned}
P:= & \text { true } \mid \text { false } \\
& P \wedge P|P \vee P| \neg P \mid P \Rightarrow P \\
& E \leq E|E \geq E| E<E|E>E| E=E \\
E: & N \\
& \mid \\
& V \\
& E+E \\
& E-E \\
N: & \cdots|-2|-1|0| 1|2| \cdots \\
V:= & x|y| z \mid \cdots
\end{aligned}
$$

This kind of definition is called inductive definition, which is out of scope of this lecture. We inductively define substitutions for the logical expressions defined above as follows, which is also out of scope of this lecture.

$$
\begin{array}{ll}
P[E / x]=\text { case } P \text { of } & \\
\text { true } & \rightarrow \text { true } \\
\text { false } & \rightarrow \text { false } \\
P_{1} \wedge P_{2} & \rightarrow P_{1}[E / x] \wedge P_{2}[E / x] \\
P_{1} \vee P_{2} & \rightarrow P_{1}[E / x] \vee P_{2}[E / x] \\
\neg P & \rightarrow \neg P[E / x] \\
P_{1} \Rightarrow P_{2} & \rightarrow P_{1}[E / x] \Rightarrow P_{2}[E / x] \\
E_{1} \leq E_{2} & \rightarrow E_{1}[E / x] \leq E_{2}[E / x] \\
E_{1} \geq E_{2} & \rightarrow E_{1}[E / x] \geq E_{2}[E / x] \\
E_{1}<E_{2} & \rightarrow E_{1}[E / x]<E_{2}[E / x] \\
E_{1}>E_{2} & \rightarrow E_{1}[E / x]>E_{2}[E / x] \\
E_{1}=E_{2} & \rightarrow E_{1}[E / x]=E_{2}[E / x] \\
E\left[E_{0} / x\right]=\text { case } E \text { of } & \\
N & \rightarrow N \\
E_{1}+E_{2} & \rightarrow E_{1}\left[E_{0} / x\right]+E_{2}\left[E_{0} / x\right] \\
E_{1}-E_{2} & \rightarrow E_{1}\left[E_{0} / x\right]-E_{2}\left[E_{0} / x\right] \\
V & \rightarrow \text { if } V=x \text { then } E_{0} \text { else } V
\end{array}
$$

## 3 Notation of Hoare triples

People use various notations for Hoare triples. In the slides we used the notation of the form $\left\{P_{1}\right\} S\left\{P_{2}\right\}$, while the original paper by Hoare [1] used
the notation of the form $P_{1}\{S\} P_{2}$, where the statements are surrounded by braces.

## References

[1] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-580, 583, 1969.

