
1 
 

L0930300	 Principles	 of	 Programming	 Languages	 Isao	 Sasano	 

	 

College	 College	 of	 Engineering	 

Department	 Department	 of	 Information	 Science	 and	 Engineering	 

Grade	 2nd	 Year	 Students	 

Semester	 Second	 Semester	 

Credit	 2	 

Course	 Type	 Compulsory	 Elective	 

Course	 

Classification	 
Specialty	 

Mode	 of	 Delivery	 Lecture	 

	 

Course	 Outline	 
	 	 	 	 	 	 	 

Computers operate according to programs, which are described in programming languages. Programming 

languages should be defined so that the semantics of programs are clear to anybody. Programming 

languages are defined by giving their syntax and semantics. We illustrate how to define the semantics of 

programming languages by giving operational semantics and axiomatic semantics to tiny languages. We 

also illustrate the concepts of type systems by giving a type system for a tiny subset of the C language. 

As the classification of programming languages by their computational models we give explanations to 

imperative, functional, logic, and object-oriented languages. We also present major concepts of 

programming languages such as the scope rules of variables and the mechanisms of parameter passing. 

	 

Achievement	 

Objectives	 	 	 	 	 	 	 	 

1.	 Understanding	 the	 formal	 description	 of	 the	 semantics	 of	 programming	 languages	 and	 being	 able	 to	 

describe	 semantics	 of	 short	 programs	 in	 tiny	 languages	 based	 on	 axiomatic	 and	 operational	 semantics	 

2.	 Understanding	 the	 scope	 rules	 (static	 and	 dynamic)	 of	 variables	 and	 being	 able	 to	 explain	 how	 the	 meaning	 

of	 programs	 changes	 according	 to	 the	 scope	 rules	 

3.	 

	 

4.	 

5.	 

Understanding	 the	 mechanisms	 of	 parameter	 passing	 and	 being	 able	 to	 explain	 how	 the	 meaning	 of	 programs	 

changes	 according	 to	 the	 mechanisms	 

Being	 able	 to	 explain	 the	 classification	 of	 programming	 languages	 based	 on	 their	 computational	 models	 

Being	 able	 to	 check	 whether	 or	 not	 simple	 programs	 in	 tiny	 C	 language	 have	 the	 type	 consistency	 according	 

to	 the	 given	 simple	 type	 system	 
	 

	 

Course	 Plan	 
	 	 	 	 	 	 	 

	 
【Course	 Plan】	 

【Assignment（including	 

preparation	 and	 review）】	 

1.	 Classification	 of	 programming	 languages	 and	 a	 simple	 example	 of	 Section	 8.1	 of	 the	 reference	 book	 	 



2 
 

programming	 languages	 

l Imperative,	 functional,	 logic,	 and	 object-oriented	 languages	 

l A	 simple	 language	 ---	 Little	 quilt	 

2.	 Imperative	 languages	 (1)	 

l Assignment	 

l Structured	 programming	 

l Control	 flow	 

Section	 3.1,	 3.2,	 and	 3.3	 of	 the	 

reference	 book	 

3.	 Imperative	 languages	 (2)	 

l Break	 statement,	 continue	 statement,	 goto	 statement,	 and	 return	 

statement	 

Section	 3.4	 of	 the	 reference	 book	 

4.	 Imperative	 languages	 (3)	 

l Compilation	 of	 sentences	 

l Short-circuit	 evaluation	 

l Assertion	 

p.	 109	 and	 p.	 87	 of	 the	 reference	 

book	 

5.	 Imperative	 languages	 (4)	 

l Hoare	 triple	 

l Hoare	 logic	 

Section	 3.6	 of	 the	 reference	 book	 

6.	 Imperative	 language	 (5)	 and	 a	 small	 examination	 

l Procedure	 

l Parameter-passing	 mechanisms	 

l Scope	 rules	 of	 variables	 

Section	 5.2	 and	 5.3	 of	 the	 

reference	 book	 

7.	 Operational	 semantics	 (1)	 

l An	 operational	 semantics	 for	 a	 tiny	 C	 language	 

Ø Definition	 of	 the	 meaning	 of	 expressions	 

Ø Definition	 of	 the	 meaning	 of	 sentences	 

Section	 13.3	 of	 the	 reference	 book	 

provides	 an	 operational	 semantics,	 

although	 it	 is	 for	 a	 functional	 

language.	 This	 lecture	 provides	 

one	 for	 an	 imperative	 language,	 but	 

the	 basic	 ideas	 are	 similar.	 Since	 

imperative	 languages	 support	 

assignments,	 we	 have	 to	 care	 about	 

the	 states,	 which	 the	 reference	 

book	 does	 not	 provide	 the	 

explanation	 for.	 Each	 student	 is	 

recommended	 to	 try	 to	 consider	 how	 

to	 define	 an	 operational	 semantics	 

for	 an	 imperative	 language.	 

8.	 Mid-term	 examination	 and	 explanation	 of	 the	 answers	 

l Paper-and-pencil	 test	 for	 checking	 the	 understanding	 of	 the	 

contents	 of	 the	 lectures	 from	 the	 first	 to	 the	 seventh	 

Review	 the	 contents	 of	 all	 the	 

lectures	 until	 the	 last	 one	 

9.	 Type	 system	 Review	 variable	 declarations	 of	 



3 
 

l Variable	 declarations	 in	 the	 C	 language	 

l A	 type	 system	 for	 a	 tiny	 C	 language	 

the	 C	 language	 

10.	 Lambda	 calculus	 

l Syntax	 of	 the	 lambda	 expressions	 

l Beta	 transformation	 

Chapter	 14	 of	 the	 reference	 book	 

11.	 Object-oriented	 languages	 (1)	 

l Class	 

Chapter	 6	 of	 the	 reference	 book	 

12.	 Object-oriented	 languages	 (2)	 

l Inheritance	 

l Virtual	 function	 

Chapter	 7	 of	 the	 reference	 book	 

13.	 Logic	 programming	 Chapter	 11	 of	 the	 reference	 book	 

14.	 Functional	 programming	 and	 a	 small	 examination	 Chapter	 8	 and	 9	 of	 the	 reference	 

book	 

15.	 Final	 examination	 and	 explanation	 of	 the	 answers	 

l Paper-and-pencil	 test	 for	 checking	 the	 understanding	 of	 the	 

contents	 of	 the	 lectures	 from	 the	 first	 to	 the	 fourteenth	 

Review	 the	 contents	 of	 all	 lectures	 

	 

	 

Evaluation	 Method	 

and	 Criteria	 	 	 	 	 	 	 	 

Mid-term	 exam	 is	 evaluated	 on	 a	 40-point	 scale,	 final	 exam	 a	 50-point,	 and	 small	 exams	 

a	 10-point.	 When	 the	 mid-term	 exam	 is	 M	 point,	 the	 final	 exam	 F	 point,	 and	 the	 small	 exams	 

S	 point,	 the	 overall	 score	 is	 S+M+F*(100-(S+M))/50.	 

	 	 

Textbooks	 and	 

Reference	 

Materials	 
	 	 	 	 	 	 	 

We	 make	 materials	 public	 on	 a	 web	 page.	 

A	 reference	 book	 is:	 

l Programming	 languages	 concepts	 &	 constructs	 2nd	 edition,	 Ravi	 Sethi,	 Addison-Wesley,	 
1996.	 

This	 class	 is	 largely	 based	 on	 this	 book.	 Currently	 it	 takes	 time	 to	 purchase	 this	 book.	 

A	 recommended	 book	 is:	 

l Concepts	 in	 programming	 languages,	 John	 C.	 Mitchell,	 Cambridge	 University	 Press,	 2001.	 
	 

Pre-Course	 

Preparation	 	 	 	 	 	 	 	 

Introduction	 to	 computer	 science	 and	 introduction	 to	 programming	 1	 and	 2.	 	 



4 
 

	 

Office	 Hours,	 Contact	 

Method	 	 	 	 	 	 	 	 	 

Before	 and	 after	 each	 lecture	 or	 any	 time	 agreed	 on	 by	 email	 

	 

Relevance	 to	 

Environmental	 

Education	 
	 	 	 	 	 	 	 

None	 

	 


