Principles of Programming Languages
 Small examination

Student ID:
Name:

Problem 1 Show the type consistency of the program fragment according to (1) and (2). Note that the program fragment is written in the subset of C language shown in the lecture.

```
int *p;
int x[3];
p = x;
```

(1) Rewrite the variable declarations int $* \mathrm{p}$; and int $\mathrm{x}[3]$; in the postfix notation shown in the lecture.
(2) Show the type consistency of the assignment expression $\mathrm{p}=\mathrm{x}$ by applying the inference rules to the declarations of p and x in the postfix notation obtained in (1).

Typing rules

- Rules for function calls, pointers, arrays

$$
\frac{e: \tau[n]}{e[i]: \tau} \quad \frac{e: \tau()}{e(): \tau} \quad \frac{e: \tau *}{* e: \tau} \quad \frac{e: \tau[n]}{e: \tau \&}
$$

- Rule for assignment operator $=$, where e is an l-value expresssion and not a constant.

$$
\frac{e: \tau \quad e^{\prime}: \tau}{e=e^{\prime}: \tau}
$$

- Rule for the \& operator where the outermost part of τ is not $\&$.

$$
\frac{e: \tau}{\& e: \tau \&} \quad \frac{e: \tau \&}{* e: \tau} \quad \frac{e: \tau * e^{\prime}: \tau \&}{e=e^{\prime}: \tau \&}
$$

Problem 2 A lambda expression $(\lambda x . \lambda y . x)((\lambda z . z) w)$ can be transformed to $(\lambda y . w)$ by applying the β reductions. Write the each step of the β reductions. (Although there are more than one sequences of β reductions, write one of them.)

Rules for lambda calculus

- β reductions

$$
\begin{gathered}
(\lambda x . M) N \underset{\beta}{\longrightarrow} M[N / x] \\
M \underset{\beta}{\longrightarrow} N
\end{gathered} \begin{gathered}
M \underset{\beta}{\longrightarrow} N x \cdot N
\end{gathered} \begin{gathered}
M P \xrightarrow[\beta]{\longrightarrow} N P
\end{gathered} \quad \begin{gathered}
M \underset{\beta}{\longrightarrow} P N
\end{gathered}
$$

- Substitutions

$$
\begin{aligned}
c[N / x] & =c \\
x[N / x] & =N \\
x[N / y] & =y(x \neq y) \\
(\lambda y \cdot M)[N / x] & = \begin{cases}\lambda y \cdot M & \text { if } x=y \\
\lambda y \cdot(M[N / x]) & \text { if } x \neq y, y \notin F V(N) \\
\lambda z \cdot((M[z / y])[N / x]) & \text { if } x \neq y, z \neq x, y \in F V(N), \\
& z \notin F V(M), z \notin F V(N)\end{cases} \\
\left(M_{1} M_{2}\right)[N / x] & =\left(M_{1}[N / x]\right)\left(M_{2}[N / x]\right)
\end{aligned}
$$

- Free variables

$$
\begin{aligned}
F V(c) & =\{ \} \\
F V(x) & =\{x\} \\
F V(\lambda x . M) & =F V(M) \backslash\{x\} \\
F V\left(M_{1} M_{2}\right) & =F V\left(M_{1}\right) \cup F V\left(M_{2}\right)
\end{aligned}
$$

Problem 3 Write the output to the display when executing the following program in C++.

```
#include <stdio.h>
class B {
public:
    virtual char f() { return 'B';}
    char g() { return 'B'; }
    char testF(B *b) { return b->f();}
    char testG(B *b) { return b->g();}
};
class D : public B {
public:
    char f() { return 'D';}
    char g() { return 'D';}
};
int main(void) {
    D *d = new D;
    printf("%c%c\n", d->testF(d), d->testG(d));
    return 0;
}
```

Problem 4 Write the solution (the substitution to the variable X) to the query a(X). after defining a, b, c, d, and e in Prolog as follows.

```
a(1) :- b.
a(2) :- e.
b :- !, c.
b :- d.
c :- fail.
d.
e.
```

Problem 5 Write the result of evaluating length [1,2,3] after defining length in Standard ML.

```
fun length nil = 0
    | length (x::xs) = 1 + length xs;
```

