Exercise 3

Isao Sasano

Exercise 3 Fit a parabola (a square function) to the function cosx on

[—5, 5] so that (the half of) the integral of the squares of the distances

between them, where the distance is measured in the vertical direction (the
y-direction).
Solution Let the function be f(x) = ax? + bx + ¢. The half of the integral

™ T

of the squares of the distances between f(x) and cosz on [—7, 7] is given as
follows.
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J = 5/7{f(x)—cosx} dz
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= 3 *faz® + bx + ¢ — cosz}?dw
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J takes the minimum value in the point where the partial derivatives of J
with respect to a, b, and ¢ are 0.
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Firstly the partial derivative of J with respect to a is calculated as follows.
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0J = 0 {ax® + br + ¢ — cos x}?dx
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= 5 gz/_i;{ax2+bx+c—cosx}2dm
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— 2/2 %{a:f%—bx%—c—cosx}?dx
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=5 /2 2{az® + bx + ¢ — cos r}z’dx
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= {az® 4+ bx + ¢ — cosx}r’dw
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= / {ax* + ba® + cx® — 2% cosx}dx
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Here we calculate each of the integrals. As for 2* we obtain
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/ vidr = 2 / z*dr  (since x* is an even function)
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As for 23 its integral is 0 since it is an odd function.
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As for 22 we obtain
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As for x2 cos z we obtain
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/ 2% cos zdx 2 / z? coszdz  (since 2? cosx is an even function)
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In the following we calculate fog 22 cos xdx.
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/ 22 cosxdr = [xQ sin :EL)Q - / 2x sin xdx
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= 7TZ—Q/;xsinL’dx
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Here we calculate [;* = sin zdz.

3 . cosx]? 5 cosx
rsinzdr = |z — dx
0 -1 0 0 -1
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= [sinz|}
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Now we resume the calculation of [;? 22 cos zdz.
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/ 22cosxdr = — —2-1
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Thus % is obtained as follows.
o0J 7o w3 w2
o= gt e—2(——2
da st~ =2
5 3 2
= — —c— — +14
0 TR 2 T

Secondly the partial derivative of J with respect to b is calculated as follows.

aJ
% = 3 2/g{ax +br + ¢ — cosz}2dx

= 286/ {ax* + br + ¢ — cosz}dx

= 2/ {ax + bz + ¢ — cosz}dw

= 2/ 2{az® + br + ¢ — cos v }xdx
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= a/5 ycgdx—i-b/5 dex+c/§ xdx—/E z cos xdx
=z _x _

= 2b [ 2°dz (2%, z, and 2 cosx are odd functions and z? is an even function)
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Thirdly the partial derivative of J with respect to c¢ is calculated as follows.

% = 802/ {az? + bx + ¢ — cosz}*dx
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= 5 % * faz® + bz + ¢ — cosz}2dw
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= 2/2 %{a$2+bz+c—cosx}2dx
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= 5/2 2{az® + bx +c—cosz} 1 dw
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= /5 {az® + bx + ¢ — cosx}dw
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= 2a/§x2dx+7rc—2/§cosxdx
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= 2a-ﬂ+ﬂc—2[sinx]§
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= %a+7rc—2

Thus we obtain the system of equations with respect to a, b, and c.

%a—l—ﬂc—Q:O

By solving this, we obtain the solution.

6072 — 720
a=—
s

Hence the function is obtained as follows.

6072 — 720 , 60 — 372
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The function is depicted with cosz on [~7, 7] in Fig. 1. In Fig. 1 the red

curve is the square function and the green curve is the function cos .
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Figure 1: The closest square function to cosz on the range -7, 7]



