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This document is largely based on the reference book [1] with some parts
slightly changed.

1 Fourier Integral

Suppose a periodic function fL(x) of period 2L is represented by a Fourier
series

fL(x) =
1

2
a0 +

∞∑
k=1

(ak cos ωkx + bk sin ωkx)

where a0, ak, bk, ωk are given as follows.

ωk =
kπ

L

a0 =
1

L

∫ L

−L

fL(x)dx

ak =
1

L

∫ L

−L

fL(x) cos ωkxdx

bk =
1

L

∫ L

−L

fL(x) sin ωkxdx

Then fL(x) is represented as follows.

fL(x) =
1

2L

∫ L

−L

fL(x)dx +
1

L

∞∑
k=1

{
cos ωkx

∫ L

−L

fL(x) cos ωkxdx

+ sin ωkx

∫ L

−L

fL(x) sin ωkxdx

}
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We now set

∆ω = ωk+1 − ωk =
(k + 1)π

L
− kπ

L
=

π

L
.

Since 1/L = ∆ω/π we may rewrite the above equation as follows.

fL(x) =
1

2L

∫ L

−L

fL(x)dx +
∆ω

π

∞∑
k=1

{
cos ωkx

∫ L

−L

fL(x) cos ωkxdx

+ sin ωkx

∫ L

−L

fL(x) sin ωkxdx

}
=

1

2L

∫ L

−L

fL(x)dx +
1

π

∞∑
k=1

{
cos ωkx

∫ L

−L

fL(x) cos ωkxdx

+ sin ωkx

∫ L

−L

fL(x) sin ωkxdx

}
∆ω

We now let L → ∞ and assume that the resulting function

f(x) = lim
L→∞

fL(x)

is absolutely integrable on the x-axis; that is, the following finite limits exist.

lim
a→−∞

∫ 0

a

|f(x)|dx + lim
a→∞

∫ a

0

|f(x)|dx

Note that this is written as

∫ ∞

−∞
|f(x)|dx. Then the first term

1

2L

∫ L

−L

fL(x)dx

approaches zero. Also ∆ω = π/L approaches zero and it seems plausible that
the infinite series becomes an integral from 0 to ∞ as follows1 2.

f(x) =
1

π

∫ ∞

0

{
cos ωx

∫ ∞

−∞
f(x) cos ωxdx + sin ωx

∫ ∞

−∞
f(x) cos ωxdx

}
dω

1It just seems plausible and is not the logical consequence (at least in the explanation
in this material). Fourier series and Fourier transformations should be argued separately.
Having said that, there are intuitively some connection so that, in textbooks used in
Engineering classes, Fourier transformation is explained as the limit of Fourier series as
the period goes to infinity.

2Notice that I use the same name x for a few variables each of which has different
scope. Of course we can rename inner x as other name such as v, which might be a usual
way of writing this kind of formula.
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By introducing the functions

A(ω) =
1

π

∫ ∞

−∞
f(x) cos ωxdx (1)

and

B(ω) =
1

π

∫ ∞

−∞
f(x) sin ωxdx (2)

we can also write the above formula as follows.

f(x) =

∫ ∞

0

{A(ω) cos ωx + B(ω) sin ωx} dω (3)

This is called a representation of f(x) by a Fourier integral.
The following theorem holds (see p. 513 of the reference book [1]).

Theorem 1 If f(x) is piecewise continuous in every finite interval and has
a right-hand derivative and a left-hand derivative at every point and if f(x)
is absolutely integrable, then f(x) can be represented by (3) with A and B
given by (1) and (2). At a point where f(x) is discontinuous the value of the
Fourier integral equals the average of the left- and right-hand limits of f(x)
at that point. In formula,∫ ∞

0

{A(ω) cos ωx + B(ω) sin ωx} dω =
f(x − 0) + f(x + 0)

2
.

�

Example Calculate the Fourier integral of the following function.

f(x) =

{
1 −1 < x < 1
0 otherwise

3



Solution We calculate A(ω) and B(ω) as follows.

A(ω) =
1

π

∫ ∞

−∞
f(x) cos ωxdx

=
1

π

∫ 1

−1

cos ωxdx

=
1

π

[
sin ωx

ω

]1

−1

=
2 sin ω

πω

B(ω) =
1

π

∫ ∞

−∞
f(x) sin ωxdx

=
1

π

∫ 1

−1

sin ωxdx

= 0

So we obtain the Fourier integral of f(x) as follows.

2

π

∫ ∞

0

cos ωx sin ω

ω
dω

By Theorem 1 we obtain the following equality.

2

π

∫ ∞

0

cos ωx sin ω

ω
dω =


1 −1 < x < 1
1/2 x = −1, 1
0 otherwise

We should mention one thing. The integral above can be considered as
the limit of the function

2

π

∫ a

0

cos ωx sin ω

ω
dω

as a goes to infinity. In this integral, there are oscillations near the points
x = −1 and x = 1. The oscillations does not disappear even if a increases,
similarly to the Fourier series. This is called the Gibbs phenomenon.
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Note By setting x = 0 in the Fourier integral of f(x), we obtain the following
equality.

2

π

∫ ∞

0

sin ω

ω
dω = 1

By multiplying the both sides by
π

2
we obtain the following equality.∫ ∞

0

sin ω

ω
dω =

π

2

This is called the Dirichlet integral. Consider the following (partial) inte-
gral (∞ is replaced by a) so called sine integral.

Si(a) =

∫ a

0

sin ω

ω
dω

In the sine integral Si(a), there are oscillations. The oscillations in the above
integral come from the oscillations in the sine integral.

2 Fourier transform

The (real) Fourier integral is

f(x) =

∫ ∞

0

{A(ω) cos ωx + B(ω) sin ωx} dω

where A and B are given as follows.

A(ω) =
1

π

∫ ∞

−∞
f(v) cos ωvdv

B(ω) =
1

π

∫ ∞

−∞
f(v) sin ωvdv

5



Substituting A and B into the integral, we have

f(x) =

∫ ∞

0

{
1

π

∫ ∞

−∞
f(v) cos ωvdv cos ωx +

1

π

∫ ∞

−∞
f(v) sin ωvdv sin ωx

}
dω

=
1

π

∫ ∞

0

{∫ ∞

−∞
f(v) cos ωvdv cos ωx +

∫ ∞

−∞
f(v) sin ωvdv sin ωx

}
dω

=
1

π

∫ ∞

0

{∫ ∞

−∞
f(v) cos ωv cos ωxdv +

∫ ∞

−∞
f(v) sin ωv sin ωxdv

}
dω

=
1

π

∫ ∞

0

{∫ ∞

−∞
f(v)(cos ωv cos ωx + sin ωv sin ωx)dv

}
dω

=
1

π

∫ ∞

0

{∫ ∞

−∞
f(v) cos(ωx − ωv)dv

}
dω

=
1

π

∫ ∞

0

{∫ ∞

−∞
f(v) cos(ω(x − v))dv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) cos(ω(x − v))dv

}
dω

(since the integral in the brackets is an even function of ω)

The integral of this form with sin instead of cos

1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) sin(ω(x − v))dv

}
dω

is zero since the integral in the brackets is an odd function of ω.
By the Euler formula

eix = cos x + i sin x

we obtain the following equality.

eiω(x−v) = cos(ω(x − v)) + i sin(ω(x − v))

By multiplying the both sides by f(v) we obtain the following equality.

f(v)eiω(x−v) = f(v) cos(ω(x − v)) + if(v) sin(ω(x − v))

By taking integral with respect to v and ω and multiplying the result by
1

2π
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we obtain the following equality.

1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v)eiω(x−v)dv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) cos(ω(x − v)) + if(v) sin(ω(x − v))dv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) cos(ω(x − v))dv

}
dω

+i
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) sin(ω(x − v))dv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v) cos(ω(x − v))dv

}
dω

= f(x)

So we obtain the following equality.

f(x) =
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v)eiω(x−v)dv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v)eiωx−iωvdv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v)eiωxe−iωvdv

}
dω

=
1

2π

∫ ∞

−∞

{∫ ∞

−∞
f(v)e−iωvdv

}
eiωxdω

We usually write this as follows3.

f(x) =
1

2π

∫ ∞

−∞
F (ω)eiωxdω

F (ω) =

∫ ∞

−∞
f(x)e−iωxdx

We call

∫ ∞

−∞
f(x)e−iωxdx the Fourier transform of f(x) and we call

1

2π

∫ ∞

−∞
F (ω)eiωxdω the inverse Fourier transform of F (ω). Note that the

3The constants ( 1
2π and 1) depend on textbooks. They may be 1√

2π
and 1√

2π
.
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above two equalities are just definitions of transformations and f(x) might
not be equal to the inverse Fourier transform of the Fourier transform of f(x)
(see Theorem 1).

Example Calculate the Fourier transform of the following function.

f(x) =

{
1 −1 < x < 1
0 otherwise

Solution

F (ω) =

∫ 1

−1

e−iωxdx

=

[
e−iωx

−iω

]1

−1

=
1

−iω
(e−iω − eiω)

=
1

−iω
(cos ω − i sin ω − (cos ω + i sin ω))

=
1

−iω
(−2i sin ω)

= 2
sin ω

ω

References

[1] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons
Ltd., tenth edition, 2011.

8


