Example 3

Isao Sasano

2016 April 26

Example Fit a line (a linear function) to the function $\sin x$ on $\left[0, \frac{\pi}{2}\right]$ so that (the half of) the integral of the squares of the distances between them, where the distance is measured in the vertical direction (the y -direction).
Solution Let the function be $f(x)=a x+b$. The half of the integral of the squares of the distances between $f(x)$ and $\sin x$ on $\left[0, \frac{\pi}{2}\right]$ is given as follows.

$$
\begin{aligned}
J & =\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\{f(x)-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\}^{2} \mathrm{~d} x
\end{aligned}
$$

J takes the minimum value in the point where the partial derivatives of J with respect to a, b, and c are 0 .

$$
\frac{\partial J}{\partial a}=0, \quad \frac{\partial J}{\partial b}=0
$$

Firstly the partial derivative of J with respect to a is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =\frac{\partial}{\partial a} \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \frac{\partial}{\partial a} \int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial a}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 2\{a x+b-\sin x\} x \mathrm{~d} x \\
& =\int_{0}^{\frac{\pi}{2}}\left\{a x^{2}+b x-x \sin x\right\} \mathrm{d} x \\
& =a \int_{0}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x+b \int_{0}^{\frac{\pi}{2}} x \mathrm{~d} x-\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x
\end{aligned}
$$

Here we calculate each of the integrals. As for x^{2} we obtain

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x=\left[\frac{x^{3}}{3}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi^{3}}{24}
$$

and as for x we obtain

$$
\int_{0}^{\frac{\pi}{2}} x \mathrm{~d} x=\left[\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi^{2}}{8}
$$

In the following we calculate $\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x & =\left[x \frac{\cos x}{-1}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{-1} \mathrm{~d} x \\
& =[\sin x]_{0}^{\frac{\pi}{2}} \\
& =1
\end{aligned}
$$

Thus $\frac{\partial J}{\partial a}$ is obtained as follows.

$$
\frac{\partial J}{\partial a}=\frac{\pi^{3}}{24} a+\frac{\pi^{2}}{8} b-1
$$

Secondly the partial derivative of J with respect to b is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial b} & =\frac{\partial}{\partial b} \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \frac{\partial}{\partial b} \int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial b}\{a x+b-\sin x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 2\{a x+b-\sin x\} \mathrm{d} x \\
& =\int_{0}^{\frac{\pi}{2}}\{a x+b-\sin x\} \mathrm{d} x \\
& =a \int_{0}^{\frac{\pi}{2}} x \mathrm{~d} x+b \int_{0}^{\frac{\pi}{2}} \mathrm{~d} x-\int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x \\
& =\frac{\pi^{2}}{8} a+\frac{\pi}{2} b-1
\end{aligned}
$$

Figure 1: The closest linear function to $\sin x$ on the range $\left[0, \frac{\pi}{2}\right]$

Thus we obtain the system of equations with respect to a and b.

$$
\begin{gathered}
\frac{\pi^{3}}{24} a+\frac{\pi^{2}}{8} b-1=0 \\
\frac{\pi^{2}}{8} a+\frac{\pi}{2} b-1=0
\end{gathered}
$$

By solving this, we obtain the solution.

$$
a=\frac{96-24 \pi}{\pi^{3}}, \quad b=\frac{8 \pi-24}{\pi^{2}}
$$

Hence the function is obtained as follows.

$$
f(x)=\frac{96-24 \pi}{\pi^{3}} x+\frac{8 \pi-24}{\pi^{2}}
$$

The function is depicted with $\sin x$ on $\left[0, \frac{\pi}{2}\right]$ in Fig. 1. In Fig. 1 the red curve is the linear function and the green curve is the function $\sin x$.

