Three solutions for Exercise 10-2

Isao Sasano

2016 June 21

Exercise Consider the set of real-valued continuous functions on the interval $[-\pi, \pi]$. As we did in Exercise 9-1, we construct an inner product space where the addition, scalar multiplication, and inner product are defined as follows.

$$(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$$
$$(c\mathbf{f})(x) = c(f(x))$$
$$(\mathbf{f}, \mathbf{g}) = \int_{-\pi}^{\pi} f(x)g(x)dx$$

On this inner product space, approximate a function $f(x) = x^2$ by a linear combination of the functions $e_1(x) = \frac{1}{2}$, $e_2(x) = \cos x$, and $e_3(x) = \sin x$ (i.e., $\sum_{k=1}^{3} c_k e_k(x) = c_1 e_1(x) + c_2 e_2(x) + c_3 e_3(x)$ for some c_1 , c_2 , and c_3). That is, obtain c_1 , c_2 , c_3 so that $c_1 e_1(x) + c_2 e_2(x) + c_3 e_3(x)$ is closest to f(x). As for the measure of the distance, use (the half of) the square of the norm of the difference of $c_1 e_1(x) + c_2 e_2(x) + c_3 e_3(x)$ and f(x).

$$J = \frac{1}{2} \left\| \sum_{k=1}^{3} c_k \boldsymbol{e}_k - \boldsymbol{f} \right\|^2$$

The norm is defined as follows.

$$\|\boldsymbol{f}\| = \sqrt{(\boldsymbol{f}, \boldsymbol{f})} = \sqrt{\int_{-\pi}^{\pi} f(x)^2 dx}$$

We show three solutions. One is by solving $\frac{\partial J}{\partial c_i} = 0$ for i = 1, 2, 3. Another is by considering the special case. The other is by calculating the projection of f on the subspace spanned by e_1 , e_2 , and e_3 .

Solution 1 Firstly calculate J as follows.

$$J = \frac{1}{2} \left\| \sum_{k=1}^{3} c_k \mathbf{e}_k - \mathbf{f} \right\|^2$$

$$= \frac{1}{2} \left(\sum_{k=1}^{3} c_k \mathbf{e}_k - \mathbf{f}, \sum_{k=1}^{3} c_k \mathbf{e}_k - \mathbf{f} \right)$$

$$= \frac{1}{2} \left\{ \left(\sum_{k=1}^{3} c_k \mathbf{e}_k, \sum_{k=1}^{3} c_k \mathbf{e}_k \right) - 2 \left(\mathbf{f}, \sum_{k=1}^{3} c_k \mathbf{e}_k \right) + \|\mathbf{f}\|^2 \right\}$$

$$= \frac{1}{2} \left\{ \sum_{k,l=1}^{3} c_k c_l(\mathbf{e}_k, \mathbf{e}_l) - 2 \sum_{k=1}^{3} c_k(\mathbf{f}, \mathbf{e}_k) + \|\mathbf{f}\|^2 \right\}$$

Partially differentiate this with respect to c_i (i = 1, 2, 3).

$$\frac{\partial J}{\partial c_i} = \frac{\partial}{\partial c_i} \frac{1}{2} \left\{ \sum_{k,l=1}^3 c_k c_l(\boldsymbol{e}_k, \boldsymbol{e}_l) - 2 \sum_{k=1}^3 c_k(\boldsymbol{f}, \boldsymbol{e}_k) + \|\boldsymbol{f}\|^2 \right\}
= \frac{1}{2} \left\{ \frac{\partial}{\partial c_i} \sum_{k,l=1}^3 c_k c_l(\boldsymbol{e}_k, \boldsymbol{e}_l) - 2 \frac{\partial}{\partial c_i} \sum_{k=1}^3 c_k(\boldsymbol{f}, \boldsymbol{e}_k) \right\}
= \frac{1}{2} \left\{ 2 \sum_{k=1}^3 c_k(\boldsymbol{e}_k, \boldsymbol{e}_i) - 2(\boldsymbol{f}, \boldsymbol{e}_i) \right\}
= \sum_{k=1}^3 c_k(\boldsymbol{e}_k, \boldsymbol{e}_i) - (\boldsymbol{f}, \boldsymbol{e}_i)$$

By writing $\frac{\partial J}{\partial c_i} = 0$ for i = 1, 2, 3 in matrix form we obtain

$$\begin{pmatrix} (\boldsymbol{e}_1,\boldsymbol{e}_1) & (\boldsymbol{e}_2,\boldsymbol{e}_1) & (\boldsymbol{e}_3,\boldsymbol{e}_1) \\ (\boldsymbol{e}_1,\boldsymbol{e}_2) & (\boldsymbol{e}_2,\boldsymbol{e}_2) & (\boldsymbol{e}_3,\boldsymbol{e}_2) \\ (\boldsymbol{e}_1,\boldsymbol{e}_3) & (\boldsymbol{e}_2,\boldsymbol{e}_3) & (\boldsymbol{e}_3,\boldsymbol{e}_3) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} (\boldsymbol{f},\boldsymbol{e}_1) \\ (\boldsymbol{f},\boldsymbol{e}_2) \\ (\boldsymbol{f},\boldsymbol{e}_3) \end{pmatrix}$$

Since e_1 , e_2 , and e_3 are orthogonal to each other, we obtain

$$\begin{pmatrix} \|\boldsymbol{e}_1\|^2 & 0 & 0 \\ 0 & \|\boldsymbol{e}_2\|^2 & 0 \\ 0 & 0 & \|\boldsymbol{e}_3\|^2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} (\boldsymbol{f}, \boldsymbol{e}_1) \\ (\boldsymbol{f}, \boldsymbol{e}_2) \\ (\boldsymbol{f}, \boldsymbol{e}_3) \end{pmatrix}$$

Hence we obtain
$$c_i = \frac{(\boldsymbol{f}, \boldsymbol{e}_i)}{\|\boldsymbol{e}_i\|^2}$$
 for $i = 1, 2, 3$.

$$(f, e_1) = \int_{-\pi}^{\pi} \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_{-\pi}^{\pi} = \frac{\pi^3}{3}$$

$$(f, e_2) = \int_{-\pi}^{\pi} x^2 \cos x dx$$

$$= \left[x^2 \frac{\sin x}{-1}\right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} 2x \frac{\sin x}{-1} dx$$

$$= 2 \int_{-\pi}^{\pi} x \sin x dx$$

$$= 2 \left\{ [x \cos x]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \cos x dx \right\}$$

$$= 2 \left\{ \pi \cos \pi - (-\pi) \cos(-\pi) \right\}$$

$$= 2 \left\{ 2\pi \cos \pi \right\}$$

$$= 4\pi \cos \pi$$

$$= -4\pi$$

$$(f, e_3) = \int_{-\pi}^{\pi} x^2 \sin x dx = 0$$

$$(e_1, e_1) = \int_{-\pi}^{\pi} \frac{1}{4} dx = \left[\frac{x}{4}\right]_{-\pi}^{\pi} = \frac{\pi}{2}$$

$$(e_2, e_2) = \int_{-\pi}^{\pi} \cos^2 x dx = \pi$$

So we obtain

$$c_1 = \frac{\frac{\pi^3}{3}}{\frac{\pi}{2}} = \frac{2}{3}\pi^2$$

$$c_2 = \frac{-4\pi}{\pi} = -4$$

$$c_3 = 0$$

Thus the linear combination is obtained as follows.

$$\frac{2}{3}\pi^2 e_1 - 4e_2$$

This vector represents the following function.

$$\left(\frac{2}{3}\pi^2 \mathbf{e}_1 - 4\mathbf{e}_2\right)(x) = \frac{2}{3}\pi^2 e_1(x) - 4e_2(x)$$

$$= \frac{1}{3}\pi^2 - 4\cos x$$

Notice that the function consists of the terms up to the terms of $\cos x$ and $\sin x$ in the Fourier series of f(x).

Solution 2 Assume the following equation holds.

$$f = c_1 \boldsymbol{e}_1 + c_2 \boldsymbol{e}_2 + c_3 \boldsymbol{e}_3$$

(There is actually no coefficients c_1 , c_2 , and c_3 that satisfy the equation, but it's ok.) Take the inner product with e_1 , e_2 , and e_3 in the both side.

$$(f, e_1) = c_1(e_1, e_1) + c_2(e_2, e_1) + c_3(e_3, e_1)$$

 $(f, e_2) = c_1(e_1, e_2) + c_2(e_2, e_2) + c_3(e_3, e_2)$
 $(f, e_3) = c_1(e_1, e_3) + c_2(e_2, e_3) + c_3(e_3, e_3)$

We write the above three equations in the matrix form.

$$\begin{pmatrix} (e_1, e_1) & (e_2, e_1) & (e_3, e_1) \\ (e_1, e_2) & (e_2, e_2) & (e_3, e_2) \\ (e_1, e_3) & (e_2, e_3) & (e_3, e_3) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} (f, e_1) \\ (f, e_2) \\ (f, e_3) \end{pmatrix}$$

Notice that this is the same as the one obtained in Solution 1. So we omit the remaining calculation.

Solution 3

A linear combination of e_1 , e_2 , and e_3 is written as $c_1e_1 + c_2e_2 + c_3e_3$. It is closest to f when it is the projection of f on the subspace spanned by e_1 , e_2 , and e_3 . That is, the vector $f - (c_1e_1 + c_2e_2 + c_3e_3)$ is orthogonal to the subspace spanned by e_1 , e_2 , and e_3 . So the following three equations should hold.

$$(f - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3), \mathbf{e}_1) = 0$$

 $(f - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3), \mathbf{e}_2) = 0$
 $(f - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3), \mathbf{e}_3) = 0$

We expand the inner product in each of the equations.

$$(\mathbf{f}, \mathbf{e}_1) - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3, \mathbf{e}_1) = 0$$

 $(\mathbf{f}, \mathbf{e}_2) - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3, \mathbf{e}_2) = 0$
 $(\mathbf{f}, \mathbf{e}_3) - (c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3, \mathbf{e}_3) = 0$

We move the second inner product into RHS in each of the equations.

$$(f, e_1) = (c_1e_1 + c_2e_2 + c_3e_3, e_1)$$

 $(f, e_2) = (c_1e_1 + c_2e_2 + c_3e_3, e_2)$
 $(f, e_3) = (c_1e_1 + c_2e_2 + c_3e_3, e_3)$

We expand the inner product in the RHS in each of the equations.

$$(f, e_1) = c_1(e_1, e_1) + c_2(e_2, e_1) + c_3(e_3, e_1)$$

 $(f, e_2) = c_1(e_1, e_2) + c_2(e_2, e_2) + c_3(e_3, e_2)$
 $(f, e_3) = c_1(e_1, e_3) + c_2(e_2, e_3) + c_3(e_3, e_3)$

We write the above three equations in the matrix form.

$$\begin{pmatrix} (\boldsymbol{e}_1,\boldsymbol{e}_1) & (\boldsymbol{e}_2,\boldsymbol{e}_1) & (\boldsymbol{e}_3,\boldsymbol{e}_1) \\ (\boldsymbol{e}_1,\boldsymbol{e}_2) & (\boldsymbol{e}_2,\boldsymbol{e}_2) & (\boldsymbol{e}_3,\boldsymbol{e}_2) \\ (\boldsymbol{e}_1,\boldsymbol{e}_3) & (\boldsymbol{e}_2,\boldsymbol{e}_3) & (\boldsymbol{e}_3,\boldsymbol{e}_3) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} (\boldsymbol{f},\boldsymbol{e}_1) \\ (\boldsymbol{f},\boldsymbol{e}_2) \\ (\boldsymbol{f},\boldsymbol{e}_3) \end{pmatrix}$$

Notice that this is the same as the one obtained in Solution 1 and 2. So we omit the remaining calculation.