# Solutions for Mid-term examination 

Isao Sasano

June 2, 2015

Problem 1 (10 points) Fit a straight line (a linear function) to the three points $(0,0),(1,1),(3,4)$ so that (the half of) the sum of the squares of the distances of those points from the straight line is minimum, where the distance is measured in the vertical direction (the y-direction).

Solution Let the line (the linear function) be $f(x)=a x+b$ and $\left(x_{1}, y_{1}\right)=$ $(0,0),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(3,4)$. The half of the sum of the squares of the distances of these points from the line is given as follows.

$$
J=\frac{1}{2} \sum_{i=1}^{3}\left(f\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{3}\left(a x_{i}+b-y_{i}\right)^{2}
$$

$J$ takes the minimum value in the point where the partial derivatives of $J$ with respect to $a$ and $b$ are 0 .

$$
\frac{\partial J}{\partial a}=0, \frac{\partial J}{\partial b}=0
$$

Firstly the partial derivative of $J$ with respect to $a$ is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =\frac{\partial}{\partial a}\left\{\frac{1}{2} \sum_{i=1}^{3}\left(a x_{i}+b-y_{i}\right)^{2}\right\} \\
& =\frac{1}{2} \sum_{i=1}^{3} \frac{\partial}{\partial a}\left(a x_{i}+b-y_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{3} 2\left(a x_{i}+b-y_{i}\right) x_{i} \\
& =\sum_{i=1}^{3}\left(a x_{i}+b-y_{i}\right) x_{i} \\
& =\sum_{i=1}^{3}\left(a x_{i}^{2}+b x_{i}-x_{i} y_{i}\right) \\
& =a \sum_{i=1}^{3} x_{i}^{2}+b \sum_{i=1}^{3} x_{i}-\sum_{i=1}^{3} x_{i} y_{i}
\end{aligned}
$$

Secondly the partial derivative of $J$ with respect to $b$ is calculated as follows.

$$
\frac{\partial J}{\partial b}=\frac{\partial}{\partial b}\left\{\frac{1}{2} \sum_{i=1}^{3}\left(a x_{i}+b-y_{i}\right)^{2}\right\}
$$



Figure 1: The straight line closest to the given three points

$$
\begin{aligned}
& =\frac{1}{2} \sum_{i=1}^{3} \frac{\partial}{\partial b}\left(a x_{i}+b-y_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{3} 2\left(a x_{i}+b-y_{i}\right) \\
& =\sum_{i=1}^{3}\left(a x_{i}+b-y_{i}\right) \\
& =a \sum_{i=1}^{3} x_{i}+b \sum_{i=1}^{3} 1-\sum_{i=1}^{3} y_{i}
\end{aligned}
$$

Then we obtain the system of equations

$$
\begin{array}{r}
10 a+4 b-13=0 \\
4 a+3 b-5=0
\end{array}
$$

and $a=\frac{19}{14}, b=-\frac{1}{7}$ is the solution. Hence the function is obtained as follows.

$$
f(x)=\frac{19}{14} x-\frac{1}{7}
$$

Supplement: The function is depicted with the three points in Fig. 1.
Problem 2 ( 10 points) Fit a parabola (a square function) to the four points $(-1,0),(0,-1),(1,0),(2,1)$ so that (the half of) the sum of the squares of the distances of those points from the parabola is minimum, where the distance is measured in the vertical direction (the $y$-direction).

Solution Let the function be $f(x)=a x^{2}+b x+c$ and $\left(x_{1}, y_{1}\right)=$ $(-1,0),\left(x_{2}, y_{2}\right)=(0,-1),\left(x_{3}, y_{3}\right)=(1,0),\left(x_{4}, y_{4}\right)=(2,1)$. The half of the
sum of the squares of the distances of these points from the parabola is given as follows.

$$
J=\frac{1}{2} \sum_{i=1}^{4}\left(f\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2}
$$

$J$ takes the minimum value in the point where the partial derivatives of $J$ with respect to $a, b$, and $c$ are 0 .

$$
\frac{\partial J}{\partial a}=0, \quad \frac{\partial J}{\partial b}=0, \quad \frac{\partial J}{\partial c}=0
$$

Firstly the partial derivative of $J$ with respect to $a$ is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =\frac{\partial}{\partial a}\left\{\frac{1}{2} \sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2}\right\} \\
& =\frac{1}{2} \sum_{i=1}^{4} \frac{\partial}{\partial a}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \frac{\partial}{\partial a}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) x_{i}^{2} \\
& =\sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) x_{i}^{2} \\
& =\sum_{i=1}^{4}\left(a x_{i}^{4}+b x_{i}^{3}+c x_{i}^{2}-x_{i}^{2} y_{i}\right) \\
& =a \sum_{i=1}^{4} x_{i}^{4}+b \sum_{i=1}^{4} x_{i}^{3}+c \sum_{i=1}^{4} x_{i}^{2}-\sum_{i=1}^{4} x_{i}^{2} y_{i}
\end{aligned}
$$

Secondly the partial derivative of $J$ with respect to $b$ is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial b} & =\frac{\partial}{\partial b}\left\{\frac{1}{2} \sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2}\right\} \\
& =\frac{1}{2} \sum_{i=1}^{4} \frac{\partial}{\partial b}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \frac{\partial}{\partial b}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) x_{i} \\
& =\sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) x_{i} \\
& =\sum_{i=1}^{4}\left(a x_{i}^{3}+b x_{i}^{2}+c x_{i}-x_{i} y_{i}\right) \\
& =a \sum_{i=1}^{4} x_{i}^{3}+b \sum_{i=1}^{4} x_{i}^{2}+c \sum_{i=1}^{4} x_{i}-\sum_{i=1}^{4} x_{i} y_{i}
\end{aligned}
$$

Thirdly the partial derivative of $J$ with respect to $c$ is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial c} & =\frac{\partial}{\partial c}\left\{\frac{1}{2} \sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2}\right\} \\
& =\frac{1}{2} \sum_{i=1}^{4} \frac{\partial}{\partial c}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \frac{\partial}{\partial c}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{4} 2\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) 1 \\
& =\sum_{i=1}^{4}\left(a x_{i}^{2}+b x_{i}+c-y_{i}\right) \\
& =a \sum_{i=1}^{4} x_{i}^{2}+b \sum_{i=1}^{4} x_{i}+c \sum_{i=1}^{4} 1-\sum_{i=1}^{4} y_{i}
\end{aligned}
$$

Then we obtain the system of equations with respect to $a, b$, and $c$. The coefficients of the equations are computed as follows.

$$
\begin{array}{ll}
\sum_{i=1}^{4} x_{i}^{4}=18, \quad \sum_{i=1}^{4} x_{i}^{3}=8, \quad \sum_{i=1}^{4} x_{i}^{2}=6, & \sum_{i=1}^{4} x_{i}=2 \\
\sum_{i=1}^{4} 1=4, \quad \sum_{i=1}^{4} x_{i}^{2} y_{i}=4, \quad \sum_{i=1}^{4} x_{i} y_{i}=2, \quad \sum_{i=1}^{4} y_{i}=0
\end{array}
$$

Hence the system of equations is obtained as follows.

$$
\begin{array}{r}
18 a+8 b+6 c-4=0 \\
\cdots(1) \\
8 a+6 b+2 c-2=0 \\
\cdots a+2 b+4 c=0 \quad \cdots(3)
\end{array}
$$

By solving this, we obtain the solution.

$$
a=\frac{1}{2}, \quad b=-\frac{1}{10}, \quad c=-\frac{7}{10}
$$

Hence the function is obtained as follows.

$$
f(x)=\frac{1}{2} x^{2}-\frac{1}{10} x-\frac{7}{10}
$$

Supplement: The function is depicted with the four points in Fig. 2. In Fig. 2 the green symbols are the given points and the red curve is the square function.

Problem 3 (10 points) Approximate a column vector $\boldsymbol{a}=\left(\begin{array}{l}3 \\ 2 \\ 6\end{array}\right)$ by a linear combination of the column vectors $\boldsymbol{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\boldsymbol{u}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$


Figure 2: The parabola closest to the given four points
(i.e., $\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}=c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}$ for some $c_{1}$ and $c_{2}$ ). As for the measure of the distance, use (the half of) the square of the norm of the difference of $c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}$ and $\boldsymbol{a}: \quad J=\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right\|^{2}$. The norm of a column vector $\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is defined to be $\|\boldsymbol{x}\|=\sqrt{(\boldsymbol{x}, \boldsymbol{x})}=\sqrt{\sum_{k=1}^{3} x_{k}^{2}}$.

Solutions We show two solutions. One is by substituting the given column vectors into the normal equations and the other is by substituting them from the beginning. Solution 1 is clearer.

Solution 1 Firstly calculate $J$ as follows.

$$
\begin{aligned}
J & =\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right\|^{2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right) \\
& =\frac{1}{2}\left\{\left(\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}\right)-2\left(\boldsymbol{a}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\}
\end{aligned}
$$

Partially differenciate this with recpect to $c_{i}(i=1,2)$.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{i}} & =\frac{\partial}{\partial c_{i}} \frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\frac{\partial}{\partial c_{i}} \sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \frac{\partial}{\partial c_{i}} \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)\right\} \\
& =\frac{1}{2}\left\{2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{i}\right)-2\left(\boldsymbol{a}, \boldsymbol{u}_{i}\right)\right\} \\
& =\sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{i}\right)-\left(\boldsymbol{a}, \boldsymbol{u}_{i}\right)
\end{aligned}
$$

By writing $\frac{\partial J}{\partial c_{1}}=0$ and $\frac{\partial J}{\partial c_{2}}=0$ in matrix form, we obtain

$$
\left(\begin{array}{cc}
\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{1}\right) & \left(\boldsymbol{u}_{2}, \boldsymbol{u}_{1}\right) \\
\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right) & \left(\boldsymbol{u}_{2}, \boldsymbol{u}_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{a}, \boldsymbol{u}_{1}\right)}{\left(\boldsymbol{a}, \boldsymbol{u}_{2}\right)}
$$

By substituting column vectors $\boldsymbol{a}, \boldsymbol{u}_{1}$, and $\boldsymbol{u}_{2}$ in the above equation we obtain

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{11}{3}
$$

By solving this we obtain

$$
\binom{c_{1}}{c_{2}}=\binom{4}{-1}
$$

Thus the linear combination of $\boldsymbol{u}_{1}$ and $b m u_{2}$ that is closest to the vector $\boldsymbol{a}$ is obtained as follows.

$$
4 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}=4\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)
$$

Solution 2 By substituting $\boldsymbol{a}, \boldsymbol{u}_{1}$, and $\boldsymbol{u}_{2}$ in $J$ we obtain

$$
\begin{aligned}
J & =\frac{1}{2}\left\|c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}-\boldsymbol{a}\right\|^{2} \\
& =\frac{1}{2}\left\|c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
3 \\
2 \\
6
\end{array}\right)\right\|^{2} \\
& =\frac{1}{2}\left\|\left(\begin{array}{c}
c_{1}+c_{2}-3 \\
c_{1}-2 \\
c_{1}-6
\end{array}\right)\right\|^{2} \\
& =\frac{1}{2}\left\{c_{1}^{2}+c_{2}^{2}+9+2 c_{1} c_{2}-6 c_{1}-6 c_{2}+c_{1}^{2}-4 c_{1}+4+c_{1}^{2}-12 c_{1}+36\right\} \\
& =\frac{1}{2}\left\{3 c_{1}^{2}+c_{2}^{2}+2 c_{1} c_{2}-22 c_{1}-6 c_{2}+49\right\}
\end{aligned}
$$

Partially differenciate this with respect to $c_{1}$ and $c_{2}$.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{1}} & =\frac{1}{2}\left\{6 c_{1}+2 c_{2}-22\right\}=3 c_{1}+c_{2}-11 \\
\frac{\partial J}{\partial c_{2}} & =\frac{1}{2}\left\{2 c_{1}+2 c_{2}-6\right\}=c_{1}+c_{2}-3
\end{aligned}
$$

Then we obtain the following systems of equations.

$$
\begin{aligned}
3 c_{1}+c_{2} & =11 \\
c_{1}+c_{2} & =3
\end{aligned}
$$

By solving this we obtain $c_{1}=4, c_{2}=-1$. Thus the linear combination of $\boldsymbol{u}_{1}$ and $\boldsymbol{u}_{2}$ that is closest to the vector $\boldsymbol{a}$ is obtained as follows.

$$
4 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}=4\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)
$$

Problem 4 (10 points) Calculate the Fourier series expansion of the function $f(x)=x^{2}$ on the range $[-\pi, \pi]$ following the two steps (1) and (2).
(1) Calculate the linear combination of the following orthogonal functions that is closest to the function $f(x)$. As for the measure of the distance, use (the half of) the integral of the square of the difference on the range $[-\pi, \pi]$.

$$
\left\{\frac{1}{2}, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots, \cos n x, \sin n x\right\}
$$

(2) Show the Fourier series of $f(x)$ on the range $[-\pi, \pi]$. (The Fourier series of $f(x)=x^{2}$ is the limit of the linear combination obtained in (1) as $n$ goes to infinity.)

## Solution

(1) Assume the following equation holds. (Note: There are no coefficients $a_{0}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ that satisfy the equation, but it's ok.)

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1}
\end{equation*}
$$

Integrate the both sides of the equation (1) on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \mathrm{d} x & =\int_{-\pi}^{\pi} \frac{1}{2} a_{0} \mathrm{~d} x \\
& =a_{0} \pi
\end{aligned}
$$

Then we calculate $a_{0}$ as follows.

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \mathrm{~d} x \\
& =\frac{2}{3} \pi^{2}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\cos k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x & =a_{k} \int_{-\pi}^{\pi} \cos ^{2} k x \mathrm{~d} x \\
& =a_{k} \pi
\end{aligned}
$$

Then we calculate $a_{k}$ as follows.

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi}\left\{\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} 2 x \frac{\sin k x}{k} \mathrm{~d} x\right\} \\
& =-\frac{2}{\pi k} \int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x \quad\left(\text { since }\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi} \text { is } 0\right)
\end{aligned}
$$

Here we calculate the integral $\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x & =\left[x \frac{-\cos k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \\
& =-\frac{1}{k}[x \cos k x]_{-\pi}^{\pi} \quad\left(\text { since } \int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \text { is } 0\right) \\
& =-\frac{1}{k}(\pi \cos \pi k-(-\pi) \cos (-\pi k)) \\
& =-\frac{1}{k}(\pi \cos \pi k+\pi \cos \pi k) \\
& =-\frac{2 \pi}{k} \cos \pi k \\
& =-\frac{2 \pi}{k}(-1)^{k}
\end{aligned}
$$

We resume the calculation of $a_{k}$.

$$
\begin{aligned}
a_{k} & =-\frac{2}{\pi k}\left(-\frac{2 \pi}{k}(-1)^{k}\right) \\
& =\frac{4}{k^{2}}(-1)^{k}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\sin k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x & =b_{k} \int_{-\pi}^{\pi} \sin ^{2} k x \mathrm{~d} x \\
& =b_{k} \pi
\end{aligned}
$$

Then we calculate $b_{k}$ as follows.

$$
\begin{aligned}
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin k x \mathrm{~d} x \\
& =0 \quad \text { (since } x^{2} \sin k x \text { is an odd function) }
\end{aligned}
$$



Figure 3: Comparison between the function $f(x)=x^{2}$ and the partial sum up to the term of $\cos 5 x$

So the linear combination that is closest to the function $f(x)$ is

$$
\frac{\pi^{2}}{3}+\sum_{k=1}^{n} \frac{4}{k^{2}}(-1)^{k} \cos k x .
$$

(2) The Fourier expansion of $f(x)=x^{2}$ is the limit of the linear combination obtained in (1) as $n$ goes to infinity:

$$
\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \cos k x .
$$

Supplement: We depict the partial summation of this series to the term of $\cos 5 x$
$\frac{\pi^{2}}{3}+\sum_{k=1}^{5} \frac{4}{k^{2}}(-1)^{k} \cos k x=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x-\frac{4}{9} \cos 3 x+\frac{1}{4} \cos 4 x-\frac{4}{25} \cos 5 x$ and $f(x)=x^{2}$ in Fig. 3.

