Supplement 13: the Euler formula

Isao Sasano

July 7, 2015

The exponential function e^{z} (from complex numbers to complex numbers) is analytic for all z and $\left(e^{z}\right)^{\prime}=e^{z}$. So we obtain the following Maclaurin series.

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

By setting $z=i y$ in this equation we obtain the following equation.

$$
\begin{aligned}
e^{i y} & =\sum_{n=0}^{\infty} \frac{(i y)^{n}}{n!} \\
& =\sum_{k=0}^{\infty} \frac{(i y)^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{(i y)^{2 k+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} y^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{i(-1)^{k} y^{2 k+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} y^{2 k}+i \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} y^{2 k+1}
\end{aligned}
$$

The series on the right hand side are the Maclaurin series of $\cos y$ and $\sin y$.

$$
\begin{aligned}
& \cos y=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} y^{2 k} \\
& \sin y=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} y^{2 k+1}
\end{aligned}
$$

So we obtain the Euler formula.

$$
e^{i y}=\cos y+i \sin y
$$

(Note) Let us see the equality

$$
\sum_{n=0}^{\infty} \frac{(i y)^{n}}{n!}=\sum_{k=0}^{\infty} \frac{(i y)^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{(i y)^{2 k+1}}{(2 k+1)!}
$$

in the above argument. In general the value of the infinite series may not be the same if we change the order of summation. But the series

$$
\sum_{n=0}^{\infty} \frac{(i y)^{n}}{n!}
$$

absolutely converges and in such cases we can change freely the order of summation. So the equality holds.

