An introduction to Fourier transforms

Isao Sasano

2015 July 14

This document is largely based on the reference book [1] with some parts slightly changed.

1 Fourier Integral

Suppose a periodic function $f_{L}(x)$ of period $2 L$ is represented by a Fourier series

$$
f_{L}(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos \omega_{k} x+b_{k} \sin \omega_{k} x\right)
$$

where $a_{0}, a_{k}, b_{k}, \omega_{k}$ are given as follows.

$$
\begin{aligned}
\omega_{k} & =\frac{k \pi}{L} \\
a_{0} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x \\
a_{k} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x \\
b_{k} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x
\end{aligned}
$$

Then $f_{L}(x)$ is represented as follows.

$$
\begin{aligned}
f_{L}(x)=\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x+\frac{1}{L} \sum_{k=1}^{\infty}\{ & \cos \omega_{k} x \int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x \\
& \left.+\sin \omega_{k} x \int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x\right\}
\end{aligned}
$$

We now set

$$
\Delta \omega=\omega_{k+1}-\omega_{k}=\frac{(k+1) \pi}{L}-\frac{k \pi}{L}=\frac{\pi}{L} .
$$

Since $1 / L=\Delta \omega / \pi$ we may rewrite the above equation as follows.

$$
\left.\left.\left.\begin{array}{rl}
f_{L}(x)=\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x+\frac{\Delta \omega}{\pi} \sum_{k=1}^{\infty}\left\{\cos \omega_{k} x \int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x\right. \\
& \left.+\sin \omega_{k} x \int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x\right\} \\
=\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x+\sum_{k=1}^{\infty} & \left\{\left(\cos \omega_{k} x\right) \frac{1}{\pi} \int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x\right.
\end{array}\right\}+\left(\sin \omega_{k} x\right) \frac{1}{\pi} \int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x\right\} \Delta \omega\right) ~ \$
$$

We now let $L \rightarrow \infty$ and assume that the resulting function

$$
f(x)=\lim _{L \rightarrow \infty} f_{L}(x)
$$

is absolutely integrable on the x-axis; that is, the following finite limits exist.

$$
\lim _{a \rightarrow-\infty} \int_{a}^{0}|f(x)| \mathrm{d} x+\lim _{a \rightarrow \infty} \int_{0}^{a}|f(x)| \mathrm{d} x
$$

Note that this is written as $\int_{-\infty}^{\infty}|f(x)| \mathrm{d} x$. Then the first term $\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x$ approaches zero. Also $\Delta \omega=\pi / L$ approaches zero and it seems plausible that the infinite series becomes an integral from 0 to ∞ as follows ${ }^{1}$.

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left\{\cos \omega x \int_{-\infty}^{\infty} f(x) \cos \omega x \mathrm{~d} x+\sin \omega x \int_{-\infty}^{\infty} f(x) \cos \omega x \mathrm{~d} x\right\} \mathrm{d} \omega
$$

By introducing the functions

$$
\begin{equation*}
A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \omega x \mathrm{~d} x \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \omega x \mathrm{~d} x \tag{2}
\end{equation*}
$$

\]

we can also write the above formula as follows.

$$
\begin{equation*}
f(x)=\int_{0}^{\infty}\{A(\omega) \cos \omega x+B(\omega) \sin \omega x\} \mathrm{d} \omega \tag{3}
\end{equation*}
$$

This is called a representation of $f(x)$ by a Fourier integral.
The following theorem holds (see p. 513 of the reference book [1]).
Theorem 1 If $f(x)$ is piecewise continuous in every finite interval and has a right-hand derivative and a left-hand derivative at every point and if $f(x)$ is absolutely integrable, then $f(x)$ can be represented by (3) with A and B given by (1) and (2). At a point where $f(x)$ is discontinuous the value of the Fourier integral equals the average of the left- and right-hand limits of $f(x)$ at that point. In formula,

$$
\int_{0}^{\infty}\{A(\omega) \cos \omega x+B(\omega) \sin \omega x\} \mathrm{d} \omega=\frac{f(x-0)+f(x+0)}{2}
$$

Example Calculate the Fourier integral of the following function.

$$
f(x)= \begin{cases}1 & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Solution We calculate $A(\omega)$ and $B(\omega)$ as follows.

$$
\begin{aligned}
A(\omega) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \omega x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-1}^{1} \cos \omega x \mathrm{~d} x \\
& =\frac{1}{\pi}\left[\frac{\sin \omega x}{\omega}\right]_{-1}^{1} \\
& =\frac{2 \sin \omega}{\pi \omega}
\end{aligned}
$$

$$
\begin{aligned}
B(\omega) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \omega x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-1}^{1} \sin \omega x \mathrm{~d} x \\
& =0
\end{aligned}
$$

So we obtain the Fourier integral of $f(x)$ as follows.

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \omega x \sin \omega}{\omega} \mathrm{~d} \omega
$$

By Theorem 1 we obtain the following equality.

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \omega x \sin \omega}{\omega} \mathrm{~d} \omega= \begin{cases}1 & -1<x<1 \\ 1 / 2 & x=-1,1 \\ 0 & \text { otherwise }\end{cases}
$$

We should mention one thing. The integral above can be considered as the limit of the function

$$
\frac{2}{\pi} \int_{0}^{a} \frac{\cos \omega x \sin \omega}{\omega} \mathrm{~d} \omega
$$

as a goes to infinity. In this integral, there are oscillations near the points $x=-1$ and $x=1$. The oscillations does not disappear even if a increases, similarly to the Fourier series. This is called the Gibbs phenomenon.

Note By setting $x=0$ in the Fourier integral of $f(x)$, we obtain the following equality.

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \omega}{\omega} \mathrm{d} \omega=1
$$

By multiplying the both sides by $\frac{\pi}{2}$ we obtain the following equality.

$$
\int_{0}^{\infty} \frac{\sin \omega}{\omega} \mathrm{d} \omega=\frac{\pi}{2}
$$

This is called the Dirichlet integral. Consider the following (partial) integral (∞ is replaced by a) so called sine integral.

$$
\operatorname{Si}(a)=\int_{0}^{a} \frac{\sin \omega}{\omega} \mathrm{~d} \omega
$$

In the sine integral $\operatorname{Si}(a)$, there are oscillations. The oscillations in the above integral come from the oscillations in the sine integral.

2 Fourier transform

The (real) Fourier integral is

$$
f(x)=\int_{0}^{\infty}\{A(\omega) \cos \omega x+B(\omega) \sin \omega x\} \mathrm{d} \omega
$$

where A and B are given as follows.

$$
\begin{aligned}
A(\omega) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos \omega v \mathrm{~d} v \\
B(\omega) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin \omega v \mathrm{~d} v
\end{aligned}
$$

Substituting A and B into the integral, we have

$$
\begin{aligned}
f(x)= & \int_{0}^{\infty}\left\{\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos \omega v \mathrm{~d} v \cos \omega x+\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin \omega v \mathrm{~d} v \sin \omega x\right\} \mathrm{d} \omega \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos \omega v \mathrm{~d} v \cos \omega x+\int_{-\infty}^{\infty} f(v) \sin \omega v \mathrm{~d} v \sin \omega x\right\} \mathrm{d} \omega \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos \omega v \cos \omega x \mathrm{~d} v+\int_{-\infty}^{\infty} f(v) \sin \omega v \sin \omega x \mathrm{~d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left\{\int_{-\infty}^{\infty} f(v)(\cos \omega v \cos \omega x+\sin \omega v \sin \omega x) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega x-\omega v) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
& \text { (since the integral in the brackets is an even function of } \omega)
\end{aligned}
$$

The integral of this form with sin instead of cos

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \sin (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega
$$

is zero since the integral in the brackets is an odd function of ω.

By the Euler formula

$$
e^{i x}=\cos x+i \sin x
$$

we obtain the following equality.

$$
e^{i \omega(x-v)}=\cos (\omega(x-v))+i \sin (\omega(x-v))
$$

By multiplying the both sides by $f(v)$ we obtain the following equality.

$$
f(v) e^{i \omega(x-v)}=f(v) \cos (\omega(x-v))+i f(v) \sin (\omega(x-v))
$$

By taking integral with respect to v and ω and multiplying the result by $\frac{1}{2 \pi}$ we obtain the following equality.

$$
\begin{aligned}
\frac{1}{2 \pi} & \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) e^{i \omega(x-v)} \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega(x-v))+i f(v) \sin (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
& +i \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \sin (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) \cos (\omega(x-v)) \mathrm{d} v\right\} \mathrm{d} \omega \\
= & f(x)
\end{aligned}
$$

So we obtain the following equality.

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) e^{i \omega(x-v)} \mathrm{d} v\right\} \mathrm{d} \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) e^{i \omega x-i \omega v} \mathrm{~d} v\right\} \mathrm{d} \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) e^{i \omega x} e^{-i \omega v} \mathrm{~d} v\right\} \mathrm{d} \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f(v) e^{-i \omega v} \mathrm{~d} v\right\} e^{i \omega x} \mathrm{~d} \omega
\end{aligned}
$$

We usually write this as follows ${ }^{2}$.

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} \mathrm{~d} \omega \\
F(\omega) & =\int_{-\infty}^{\infty} f(x) e^{-i \omega x} \mathrm{~d} x
\end{aligned}
$$

We call $\int_{-\infty}^{\infty} f(x) e^{-i \omega x} \mathrm{~d} x$ the Fourier transform of $f(x)$ and we call $\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} \mathrm{~d} \omega$ the inverse Fourier transform of $F(\omega)$. Note that the above two equalities are just definitions of transformations and $f(x)$ might not be equal to the inverse Fourier transform of the Fourier transform of $f(x)$ (see Theorem 1).

Example Calculate the Fourier transform of the following function.

$$
f(x)= \begin{cases}1 & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Solution

$$
\begin{aligned}
F(\omega) & =\int_{-1}^{1} e^{-i \omega x} \mathrm{~d} x \\
& =\left[\frac{e^{-i \omega x}}{-i \omega}\right]_{-1}^{1} \\
& =\frac{1}{-i \omega}\left(e^{-i \omega}-e^{i \omega}\right) \\
& =\frac{1}{-i \omega}(\cos \omega-i \sin \omega-(\cos \omega+i \sin \omega)) \\
& =\frac{1}{-i \omega}(-2 i \sin \omega) \\
& =2 \frac{\sin \omega}{\omega}
\end{aligned}
$$

[^1]
References

[1] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley \& Sons Ltd., tenth edition, 2011.

[^0]: ${ }^{1}$ Notice that I use the same name x for a few variables each of which has different scope. Of course we can rename inner x as other name such as v, which might be a usual way of writing this kind of formula.

[^1]: ${ }^{2}$ The constants ($\frac{1}{2 \pi}$ and 1) depend on textbooks. They may be $\frac{1}{\sqrt{2 \pi}}$ and $\frac{1}{\sqrt{2 \pi}}$.

