Example 14

Isao Sasano

2015 July 14

Example Consider the periodic rectangular function $f_{L}(x)$ of period $2 L>2$ defined as follows.

$$
f_{L}(x)= \begin{cases}0 & -L<x<-1 \\ 1 & -1<x<1 \\ 0 & 1<x<L\end{cases}
$$

Calculate the Fourier series of $f_{L}(x)$ on the range $[-L, L]$ in the form of

$$
\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left\{a_{k} \cos \omega_{k} x+b_{k} \sin \omega_{k} x\right\}
$$

where $\omega_{k}=\frac{k \pi}{L}$.
Solution Assume the following equation holds. (Note that there are no coefficients a_{0}, \ldots, a_{n} that satisfy the equation, but it's ok.)

$$
f_{L}(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left\{a_{k} \cos \omega_{k} x+b_{k} \sin \omega_{k} x\right\}
$$

Firstly integrate the both sides on $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f_{L}(x) \mathrm{d} x & =\int_{-L}^{L} \frac{1}{2} a_{0} \mathrm{~d} x \\
& =L a_{0}
\end{aligned}
$$

So we obtain a_{0} as follows.

$$
\begin{aligned}
a_{0} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \mathrm{d} x \\
& =\frac{1}{L} \int_{-1}^{1} 1 \mathrm{~d} x \\
& =\frac{1}{L} \cdot 2 \\
& =\frac{2}{L}
\end{aligned}
$$

Secondly we multiply the both sides by $\cos \omega_{k} x$ and integrate them on the range $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x & =\int_{-L}^{L} a_{k} \cos ^{2} \omega_{k} x \mathrm{~d} x \\
& =L a_{k}
\end{aligned}
$$

So we calculate a_{k} as follows.

$$
\begin{aligned}
a_{k} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \cos \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L} \int_{-1}^{1} \cos \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L}\left[\frac{\sin \omega_{k} x}{\omega_{k}}\right]_{-1}^{1} \\
& =\frac{1}{L} \cdot \frac{\sin \omega_{k}-\sin \left(-\omega_{k}\right)}{\omega_{k}} \\
& =\frac{1}{L} \cdot \frac{\sin \omega_{k}+\sin \omega_{k}}{\omega_{k}} \\
& =\frac{1}{L} \cdot \frac{2 \sin \omega_{k}}{\omega_{k}} \\
& =\frac{2}{L} \cdot \frac{\sin \omega_{k}}{\omega_{k}}
\end{aligned}
$$

Thirdly we multiply the both sides by $\sin \omega_{k} x$ and integrate them on the
range $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x & =\int_{-L}^{L} b_{k} \sin ^{2} \omega_{k} x \mathrm{~d} x \\
& =L b_{k}
\end{aligned}
$$

So we calculate b_{k} as follows.

$$
\begin{aligned}
b_{k} & =\frac{1}{L} \int_{-L}^{L} f_{L}(x) \sin \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L} \int_{-1}^{1} \sin \omega_{k} x \mathrm{~d} x \\
& =0
\end{aligned}
$$

So the following is the linear combination closest to the function $f_{L}(x)$.

$$
\frac{1}{L}+\sum_{k=1}^{n}\left\{\frac{2}{L} \cdot \frac{\sin \omega_{k}}{\omega_{k}} \cos \omega_{k} x\right\}
$$

The Fourier series is the limit of the linear combination as n goes to infinity.

$$
\frac{1}{L}+\sum_{k=1}^{\infty}\left\{\frac{2}{L} \cdot \frac{\sin \omega_{k}}{\omega_{k}} \cos \omega_{k} x\right\}
$$

We depict the graphs of the relationship between ω_{k} and a_{k} for $L=2,4$, 8, 16, 32, and 64 in Fig. 1, 2, 3, 4, 5, and 6 respectively.

Comment

We obtain a non-periodic function by taking the limit of the function $f_{L}(x)$ as follows.

$$
\lim _{L \rightarrow \infty} f_{L}(x)= \begin{cases}1 & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

The resulting function is a non-periodic function. This suggests a nonperiodic function might be expanded (transformed) as well as a periodic one.

Figure 1: Relationship between ω_{k} and a_{k} for $L=2$

Figure 2: Relationship between ω_{k} and a_{k} for $L=4$

Figure 3: Relationship between ω_{k} and a_{k} for $L=8$

Figure 4: Relationship between ω_{k} and a_{k} for $L=16$

Figure 5: Relationship between ω_{k} and a_{k} for $L=32$

Figure 6: Relationship between ω_{k} and a_{k} for $L=64$

