Example 13

Isao Sasano

2015 July 7

Exercise The Fourier series $f(x)=x^{2}$ on the range $[-\pi, \pi]$ is

$$
\begin{equation*}
\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \cos k x . \tag{1}
\end{equation*}
$$

Rewrite this series in the form of a linear combination of complex exponential functions $\left\{e^{i k x} \mid k \in \mathbb{Z}\right\}$.

Solution By the Euler's formula

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{2}
\end{equation*}
$$

the following equation holds.

$$
\begin{align*}
e^{-i \theta} & =e^{i(-\theta)} \\
& =\cos (-\theta)+i \sin (-\theta) \\
& =\cos \theta-i \sin \theta \tag{3}
\end{align*}
$$

By adding the equations (2) and (3) we obtain the following equation.

$$
e^{i \theta}+e^{-i \theta}=2 \cos \theta
$$

By subtracting the equation (3) from (2) we obtain the following equation.

$$
e^{i \theta}-e^{-i \theta}=2 i \sin \theta
$$

So we obtain the following equations.

$$
\begin{align*}
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \tag{4}\\
& \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
\end{align*}
$$

By substituting $k x$ for θ in the equation (4) we obtain the following equation.

$$
\cos k x=\frac{e^{i k x}+e^{-i k x}}{2}
$$

By setting $\cos k x=\frac{e^{i k x}+e^{-i k x}}{2}$ in (1) we obtain the following series.

$$
\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \frac{e^{i k x}+e^{-i k x}}{2}
$$

We rewrite this series as follows.

$$
\begin{aligned}
\frac{\pi^{2}}{3} & +\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \frac{e^{i k x}+e^{-i k x}}{2} \\
& =\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{2}{k^{2}}(-1)^{k}\left(e^{i k x}+e^{-i k x}\right) \\
& =\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty}\left\{\frac{2}{k^{2}}(-1)^{k} e^{i k x}+\frac{2}{k^{2}}(-1)^{k} e^{-i k x}\right\} \\
& =\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty}\left\{\frac{2}{k^{2}}(-1)^{k} e^{i k x}+\frac{2}{(-k)^{2}}(-1)^{(-k)} e^{i(-k) x}\right\} \\
& =\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
\end{aligned}
$$

Here c_{k} is defined as follows.

$$
c_{k}=\left\{\begin{array}{cl}
\frac{2}{k^{2}}(-1)^{k} & k>0 \\
\frac{\pi^{2}}{3} & k=0 \\
\frac{2}{k^{2}}(-1)^{k} & k<0
\end{array}\right.
$$

Note that $\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$ is defined as follows.

$$
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} c_{k} e^{i k x}
$$

