A solution for Exercise 6

Isao Sasano

2015 May 19

Exercise Calculate the Fourier series expansion of the function $f(x)=x^{2}$ on the range $[-\pi, \pi]$.
Solution Assume the following equation holds. (Note: There are no coefficients $a_{0}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ that satisfy the equation, but it's ok.)

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1}
\end{equation*}
$$

Integrate the both sides of the equation (1) on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \mathrm{d} x & =\int_{-\pi}^{\pi} \frac{1}{2} a_{0} \mathrm{~d} x \\
& =a_{0} \pi
\end{aligned}
$$

Then we calculate a_{0} as follows.

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \mathrm{~d} x \\
& =\frac{2}{3} \pi^{2}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\cos k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x & =a_{k} \int_{-\pi}^{\pi} \cos ^{2} k x \mathrm{~d} x \\
& =a_{k} \pi
\end{aligned}
$$

Then we calculate a_{k} as follows.

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi}\left\{\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} 2 x \frac{\sin k x}{k} \mathrm{~d} x\right\} \\
& =-\frac{2}{\pi k} \int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x \quad\left(\text { since }\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi} \text { is } 0\right)
\end{aligned}
$$

Here we calculate the integral $\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x & =\left[x \frac{-\cos k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \\
& =-\frac{1}{k}[x \cos k x]_{-\pi}^{\pi} \quad\left(\text { since } \int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \text { is } 0\right) \\
& =-\frac{1}{k}(\pi \cos \pi k-(-\pi) \cos (-\pi k)) \\
& =-\frac{1}{k}(\pi \cos \pi k+\pi \cos \pi k) \\
& =-\frac{2 \pi}{k} \cos \pi k \\
& =-\frac{2 \pi}{k}(-1)^{k}
\end{aligned}
$$

We resume the calculation of a_{k}.

$$
\begin{aligned}
a_{k} & =-\frac{2}{\pi k}\left(-\frac{2 \pi}{k}(-1)^{k}\right) \\
& =\frac{4}{k^{2}}(-1)^{k}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\sin k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x & =b_{k} \int_{-\pi}^{\pi} \sin ^{2} k x \mathrm{~d} x \\
& =b_{k} \pi
\end{aligned}
$$

Then we calculate b_{k} as follows.

$$
\begin{aligned}
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin k x \mathrm{~d} x \\
& =0 \quad \text { (since } x^{2} \sin k x \text { is an odd function) }
\end{aligned}
$$

So the linear combination that is closest to the function $f(x)$ is

$$
\frac{\pi^{2}}{3}+\sum_{k=1}^{n} \frac{4}{k^{2}}(-1)^{k} \cos k x
$$

The Fourier expansion of $f(x)=x^{2}$ is the limit of the above linear combination as n goes to infinity:

$$
\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \cos k x
$$

Supplement We depict the partial summation of this series to the term of $\cos 5 x$
$\frac{\pi^{2}}{3}+\sum_{k=1}^{5} \frac{4}{k^{2}}(-1)^{k} \cos k x=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x-\frac{4}{9} \cos 3 x+\frac{1}{4} \cos 4 x-\frac{4}{25} \cos 5 x$ and $f(x)=x^{2}$ in Fig. 1 .

Figure 1: Comparison between the function $f(x)=x^{2}$ and the partial sum up to the term of $\cos 5 x$

