Two solutions for Exercise 4

Isao Sasano

2015 April 28

Exercise Approximate a column vector $\boldsymbol{a}=\left(\begin{array}{l}3 \\ 2 \\ 6\end{array}\right)$ by a linear combination of the column vectors $\boldsymbol{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\boldsymbol{u}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ (i.e., $\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}=c_{1} \boldsymbol{u}_{1}+$ $c_{2} \boldsymbol{u}_{2}$ for some c_{1} and c_{2}). That is, obtain c_{1} and c_{2} so that $c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}$ is closest to \boldsymbol{a}. As for the measure of the distance, use (the half of) the square of the norm of the difference of $c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}$ and \boldsymbol{a}.

$$
J=\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right\|^{2}
$$

The norm of a column vector $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is defined as follows.

$$
\|\boldsymbol{x}\|=\sqrt{(\boldsymbol{x}, \boldsymbol{x})}=\sqrt{\sum_{k=1}^{3} x_{k}^{2}}
$$

Solutions We show two solutions. One is by substituting the given column vectors into the normal equations and the other is by substituting them from the beginning. Solution 1 is clearer.

Solution 1 Firstly calculate J as follows.

$$
\begin{aligned}
J & =\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right\|^{2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}-\boldsymbol{a}\right) \\
& =\frac{1}{2}\left\{\left(\sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}\right)-2\left(\boldsymbol{a}, \sum_{k=1}^{2} c_{k} \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\}
\end{aligned}
$$

Partially differenciate this with recpect to $c_{i}(i=1,2)$.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{i}} & =\frac{\partial}{\partial c_{i}} \frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)+\|\boldsymbol{a}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\frac{\partial}{\partial c_{i}} \sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{l}\right)-2 \frac{\partial}{\partial c_{i}} \sum_{k=1}^{2} c_{k}\left(\boldsymbol{a}, \boldsymbol{u}_{k}\right)\right\} \\
& =\frac{1}{2}\left\{2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{i}\right)-2\left(\boldsymbol{a}, \boldsymbol{u}_{i}\right)\right\} \\
& =\sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{i}\right)-\left(\boldsymbol{a}, \boldsymbol{u}_{i}\right)
\end{aligned}
$$

By writing $\frac{\partial J}{\partial c_{1}}=0$ and $\frac{\partial J}{\partial c_{2}}=0$ in matrix form, we obtain

$$
\left(\begin{array}{cc}
\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{1}\right) & \left(\boldsymbol{u}_{2}, \boldsymbol{u}_{1}\right) \\
\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right) & \left(\boldsymbol{u}_{2}, \boldsymbol{u}_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{a}, \boldsymbol{u}_{1}\right)}{\left(\boldsymbol{a}, \boldsymbol{u}_{2}\right)}
$$

By substituting column vectors $\boldsymbol{a}, \boldsymbol{u}_{1}$, and \boldsymbol{u}_{2} in the above equation we obtain

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{11}{3}
$$

By solving this we obtain

$$
\binom{c_{1}}{c_{2}}=\binom{4}{-1}
$$

Thus the linear combination of \boldsymbol{u}_{1} and \boldsymbol{u}_{2} that is closest to the vector \boldsymbol{a} is obtained as follows.

$$
4 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}=4\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)
$$

Solution 2 By substituting $\boldsymbol{a}, \boldsymbol{u}_{1}$, and \boldsymbol{u}_{2} in J we obtain

$$
\begin{aligned}
J & =\frac{1}{2}\left\|c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}-\boldsymbol{a}\right\|^{2} \\
& =\frac{1}{2}\left\|c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
3 \\
2 \\
6
\end{array}\right)\right\|^{2} \\
& =\frac{1}{2}\left\|\left(\begin{array}{c}
c_{1}+c_{2}-3 \\
c_{1}-2 \\
c_{1}-6
\end{array}\right)\right\|^{2} \\
& =\frac{1}{2}\left\{c_{1}^{2}+c_{2}^{2}+9+2 c_{1} c_{2}-6 c_{1}-6 c_{2}+c_{1}^{2}-4 c_{1}+4+c_{1}^{2}-12 c_{1}+36\right\} \\
& =\frac{1}{2}\left\{3 c_{1}^{2}+c_{2}^{2}+2 c_{1} c_{2}-22 c_{1}-6 c_{2}+49\right\}
\end{aligned}
$$

Partially differenciate this with respect to c_{1} and c_{2}.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{1}} & =\frac{1}{2}\left\{6 c_{1}+2 c_{2}-22\right\}=3 c_{1}+c_{2}-11 \\
\frac{\partial J}{\partial c_{2}} & =\frac{1}{2}\left\{2 c_{1}+2 c_{2}-6\right\}=c_{1}+c_{2}-3
\end{aligned}
$$

Then we obtain the following systems of equations.

$$
\begin{aligned}
3 c_{1}+c_{2} & =11 \\
c_{1}+c_{2} & =3
\end{aligned}
$$

By solving this we obtain $c_{1}=4, c_{2}=-1$. Thus the linear combination of \boldsymbol{u}_{1} and \boldsymbol{u}_{2} that is closest to the vector \boldsymbol{a} is obtained as follows.

$$
4 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}=4\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)
$$

