Exercise 3

Isao Sasano

April 21, 2015

Exercise 3 Fit a parabola (a square function) to the function $\cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so that (the half of) the integral of the squares of the distances between them, where the distance is measured in the vertical direction (the y -direction).
Solution Let the function be $f(x)=a x^{2}+b x+c$. The half of the integral of the squares of the distances between $f(x)$ and $\cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is given as follows.

$$
\begin{aligned}
J & =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{f(x)-\cos x\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x
\end{aligned}
$$

J takes the minimum value in the point where the partial derivatives of J with respect to a, b, and c are 0 .

$$
\frac{\partial J}{\partial a}=0, \quad \frac{\partial J}{\partial b}=0, \quad \frac{\partial J}{\partial c}=0
$$

Firstly the partial derivative of J with respect to a is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =\frac{\partial}{\partial a} \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \frac{\partial}{\partial a} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\partial}{\partial a}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\left\{a x^{2}+b x+c-\cos x\right\} x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\} x^{2} \mathrm{~d} x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{4}+b x^{3}+c x^{2}-x^{2} \cos x\right\} \mathrm{d} x \\
& =a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{4} \mathrm{~d} x+b \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} \mathrm{~d} x+c \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x
\end{aligned}
$$

Here we calculate each of the integrals. As for x^{4} we obtain

$$
\begin{aligned}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{4} \mathrm{~d} x & =2 \int_{0}^{\frac{\pi}{2}} x^{4} \mathrm{~d} x \quad \text { (since } x^{4} \text { is an even function) } \\
& =2\left[\frac{x^{5}}{5}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi^{5}}{80}
\end{aligned}
$$

As for x^{3} its integral is 0 since it is an odd function.

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} \mathrm{~d} x=0
$$

As for x^{2} we obtain

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x=2 \int_{0}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x=2\left[\frac{x^{3}}{3}\right]_{0}^{\frac{\pi}{2}}=2 \cdot \frac{\pi^{3}}{24}=\frac{\pi^{3}}{12}
$$

As for $x^{2} \cos x$ we obtain

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x=2 \int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x \quad \text { (since } x^{2} \cos x \text { is an even function) }
$$

In the following we calculate $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x & =\left[x^{2} \sin x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} 2 x \sin x \mathrm{~d} x \\
& =\frac{\pi^{2}}{4}-2 \int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x
\end{aligned}
$$

Here we calculate $\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x & =\left[x \frac{\cos x}{-1}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{-1} \mathrm{~d} x \\
& =[\sin x]_{0}^{\frac{\pi}{2}} \\
& =1
\end{aligned}
$$

Now we resume the calculation of $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x & =\frac{\pi^{2}}{4}-2 \cdot 1 \\
& =\frac{\pi^{2}}{4}-2
\end{aligned}
$$

Thus $\frac{\partial J}{\partial a}$ is obtained as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =\frac{\pi^{5}}{80} a+\frac{\pi^{3}}{12} c-2\left(\frac{\pi^{2}}{4}-2\right) \\
& =\frac{\pi^{5}}{80} a+\frac{\pi^{3}}{12} c-\frac{\pi^{2}}{2}+4
\end{aligned}
$$

Secondly the partial derivative of J with respect to b is calculated as follows.

$$
\begin{aligned}
\frac{\partial J}{\partial b} & =\frac{\partial}{\partial b} \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \frac{\partial}{\partial b} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\partial}{\partial b}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\left\{a x^{2}+b x+c-\cos x\right\} x \mathrm{~d} x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\} x \mathrm{~d} x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{3}+b x^{2}+c x-x \cos x\right\} \mathrm{d} x \\
& =a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} \mathrm{~d} x+b \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x+c \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \mathrm{~d} x-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x \\
& =2 b \int_{0}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x \quad\left(x^{3}, x, \text { and } x \cos x \text { are odd functions and } x^{2}\right. \text { is an even function) } \\
& =2 b \cdot \frac{\pi^{3}}{24} \\
& =\frac{\pi^{3}}{12} b
\end{aligned}
$$

Thirdly the partial derivative of J with respect to c is calculated as follows.

$$
\frac{\partial J}{\partial c}=\frac{\partial}{\partial c} \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x
$$

$$
\begin{aligned}
& =\frac{1}{2} \frac{\partial}{\partial c} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\partial}{\partial c}\left\{a x^{2}+b x+c-\cos x\right\}^{2} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\left\{a x^{2}+b x+c-\cos x\right\} \cdot 1 \mathrm{~d} x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left\{a x^{2}+b x+c-\cos x\right\} \mathrm{d} x \\
& =a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x+b \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \mathrm{~d} x+c \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \mathrm{~d} x-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \mathrm{~d} x \\
& =2 a \int_{0}^{\frac{\pi}{2}} x^{2} \mathrm{~d} x+\pi c-2 \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x \\
& =2 a \cdot \frac{\pi^{3}}{24}+\pi c-2[\sin x]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi^{3}}{12} a+\pi c-2
\end{aligned}
$$

Thus we obtain the system of equations with respect to a, b, and c.

$$
\begin{aligned}
\frac{\pi^{5}}{80} a+\frac{\pi^{3}}{12} c-\frac{\pi^{2}}{2}+4 & =0 \\
\frac{\pi^{3}}{12} b & =0 \\
\frac{\pi^{3}}{12} a+\pi c-2 & =0
\end{aligned}
$$

By solving this, we obtain the solution.

$$
a=\frac{60 \pi^{2}-720}{\pi^{5}}, \quad b=0, \quad c=\frac{60-3 \pi^{2}}{\pi^{3}}
$$

Hence the function is obtained as follows.

$$
f(x)=\frac{60 \pi^{2}-720}{\pi^{5}} x^{2}+\frac{60-3 \pi^{2}}{\pi^{3}}
$$

The function is depicted with $\cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ in Fig. 1. In Fig. 1 the red curve is the square function and the green curve is the function $\cos x$.

Figure 1: The closest square function to $\cos x$ on the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

