Exercise 14-1

Isao Sasano

2015 July 14

Exercise Calculate the Fourier transform of the following function $f(x)$.

$$
f(x)= \begin{cases}x & 0<x<L \\ 0 & \text { otherwise }\end{cases}
$$

Here we define the Fourier transform and the inverse Fourier transform as follows ${ }^{1}$.

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} \mathrm{~d} \omega \\
F(\omega) & =\int_{-\infty}^{\infty} f(x) e^{-i \omega x} \mathrm{~d} x
\end{aligned}
$$

The above equations are definitions of transformations. Note that the inverse Fourier transform of the Fourier transform of $f(x)$ is not necessarily equal to $f(x)$.

[^0]
Solution

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} f(x) e^{-i \omega x} \mathrm{~d} x \\
& =\int_{0}^{L} x e^{-i \omega x} \mathrm{~d} x \\
& =\left[x \frac{e^{-i \omega x}}{-i \omega}\right]_{0}^{L}-\int_{0}^{L} \frac{e^{-i \omega x}}{-i \omega} \mathrm{~d} x \\
& =\frac{L e^{-i \omega L}}{-i \omega}-\left[\frac{e^{-i \omega x}}{-\omega^{2}}\right]_{0}^{L} \\
& =\frac{L e^{-i \omega L}}{-i \omega}+\left[\frac{e^{-i \omega x}}{\omega^{2}}\right]_{0}^{L} \\
& =i \frac{L e^{-i \omega L}}{\omega}+\frac{e^{-i \omega L}-1}{\omega^{2}} \\
& =i \frac{\omega L e^{-i \omega L}}{\omega^{2}}+\frac{e^{-i \omega L}-1}{\omega^{2}} \\
& =\frac{i \omega L e^{-i \omega L}+e^{-i \omega L}-1}{\omega^{2}} \\
& =\frac{e^{-i \omega L}(1+i \omega L)-1}{\omega^{2}} \\
& =\frac{e^{-i L \omega}(1+i L \omega)-1}{\omega^{2}}
\end{aligned}
$$

Comment The inverse Fourier transform of $F(w)$ obtained above is as follows.

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i L \omega}(1+i L \omega)-1}{\omega^{2}} e^{i \omega x} \mathrm{~d} \omega= \begin{cases}x & 0<x<L \\ L / 2 & x=L \\ 0 & \text { otherwise }\end{cases}
$$

Note that I do not obtain the inverse Fourier transform by calculating the above integral but obtained it from $f(x)$. In general, the following equation holds, similarly to the one in the Fourier series.

$$
\mathcal{F}^{-1}(\mathcal{F}(f))(x)=\frac{f(x+0)+f(x-0)}{2}
$$

[^0]: ${ }^{1}$ In the definitions the constant factor depends on textbooks.

