Exercise 13-2

Isao Sasano

2015 July 7

Exercise

(1) Calculate the Fourier series $f(x)=x$ on the range $[-L, L]$ in the form of

$$
\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left\{a_{k} \cos \omega_{k} x+b_{k} \sin \omega_{k} x\right\}
$$

where $\omega_{k}=\frac{k \pi}{L}$.
(2) Calculate the Fourier series $f(x)=x$ on the range $[-L, L]$ in the form of

$$
\sum_{k=-\infty}^{\infty} c_{k} e^{i \omega_{k} x}
$$

where $\omega_{k}=\frac{k \pi}{L}$.

Solution

(1) Assume the following equation holds. (Note that there are no coefficients a_{0}, \ldots, a_{n} that satisfy the equation, but it's ok.)

$$
f(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left\{a_{k} \cos \omega_{k} x+b_{k} \sin \omega_{k} x\right\}
$$

Firstly integrate the both sides on $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \mathrm{d} x & =\int_{-L}^{L} \frac{1}{2} a_{0} \mathrm{~d} x \\
& =L a_{0}
\end{aligned}
$$

So we obtain a_{0} as follows.

$$
\begin{aligned}
a_{0} & =\frac{1}{L} \int_{-L}^{L} f(x) \mathrm{d} x \\
& =\frac{1}{L} \int_{-L}^{L} x \mathrm{~d} x \\
& =0
\end{aligned}
$$

Secondly we multiply the both sides by $\cos \omega_{k} x$ and integrate them on the range $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \cos \omega_{k} x \mathrm{~d} x & =\int_{-L}^{L} a_{k} \cos ^{2} \omega_{k} x \mathrm{~d} x \\
& =L a_{k}
\end{aligned}
$$

So we calculate a_{k} as follows.

$$
\begin{aligned}
a_{k} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L} \int_{-L}^{L} x \cos \omega_{k} x \mathrm{~d} x \\
& =0
\end{aligned}
$$

Thirdly we multiply the both sides by $\sin \omega_{k} x$ and integrate them on the range $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \sin \omega_{k} x \mathrm{~d} x & =\int_{-L}^{L} b_{k} \sin ^{2} \omega_{k} x \mathrm{~d} x \\
& =L b_{k}
\end{aligned}
$$

So we calculate b_{k} as follows.

$$
\begin{aligned}
b_{k} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L} \int_{-L}^{L} x \sin \omega_{k} x \mathrm{~d} x \\
& =\frac{1}{L}\left\{\left[x \frac{-\cos \omega_{k} x}{\omega_{k}}\right]_{-L}^{L}-\int_{-L}^{L} \frac{-\cos \omega_{k} x}{\omega_{k}} \mathrm{~d} x\right\} \\
& =\frac{1}{L}\left\{L \cdot \frac{-\cos k \pi}{\omega_{k}}-(-L) \cdot \frac{-\cos (-k \pi)}{\omega_{k}}\right\} \\
& =\frac{1}{L}\left\{L \cdot \frac{-\cos k \pi}{\omega_{k}}+L \cdot \frac{-\cos k \pi}{\omega_{k}}\right\} \\
& =-\frac{2 \cos k \pi}{\omega_{k}} \\
& =-\frac{2}{\omega_{k}}(-1)^{k}
\end{aligned}
$$

So the following is the linear combination closest to the function $f(x)=x$.

$$
\sum_{k=1}^{n}\left\{-\frac{2}{\omega_{k}}(-1)^{k} \sin \omega_{k} x\right\}
$$

The Fourier series is the limit of the linear combination as n goes to infinity.

$$
\sum_{k=1}^{\infty}\left\{-\frac{2}{\omega_{k}}(-1)^{k} \sin \omega_{k} x\right\}
$$

We depict the partial summation of this series up to the term of $\cos \omega_{10} x$ and $f(x)=x$ when $L=1.0$ in Fig. 1 .
(2) Assume the following equation holds. (Note that there are no coefficients $c_{-n}, \ldots, c_{0}, \ldots, c_{n}$ that satisfy the equation, but it's ok.)

$$
f(x)=\sum_{l=-n}^{n} c_{l} e^{i \omega_{l} x}
$$

Figure 1: Comparison between the function $f(x)=x$ and the partial sum up to the term of $\cos \omega_{10} x$

Multiply the both sides of this equation by $e^{-i \omega_{k} x}$ and integrate them on the range $[-L, L]$.

$$
\begin{aligned}
\int_{-L}^{L} f(x) e^{-i \omega_{k} x} \mathrm{~d} x & =\int_{-L}^{L} e^{-i \omega_{k} x} \sum_{l=-n}^{n} c_{l} e^{i \omega_{l} x} \mathrm{~d} x \\
& =\int_{-L}^{L} \sum_{l=-n}^{n} c_{l} e^{i \omega_{l} x} e^{-i \omega_{k} x} \mathrm{~d} x \\
& =\int_{-L}^{L} \sum_{l=-n}^{n} c_{l} e^{i\left(\omega_{l}-\omega_{k}\right) x} \mathrm{~d} x \\
& =\int_{-L}^{L} \sum_{l=-n}^{n} c_{l} e^{i \omega_{l-k} x} \mathrm{~d} x \\
& =\sum_{l=-n}^{n} \int_{-L}^{L} c_{l} e^{i \omega_{l-k} x} \mathrm{~d} x \\
& =\int_{-L}^{L} c_{k} e^{0} \mathrm{~d} x \\
& =\int_{-L}^{L} c_{k} \mathrm{~d} x \\
& =2 L c_{k}
\end{aligned}
$$

So we obtain c_{k} as follows.

$$
c_{k}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i \omega_{k} x} \mathrm{~d} x
$$

When $k \neq 0$ we calculate c_{k} as follows.

$$
\begin{aligned}
c_{k} & =\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i \omega_{k} x} \mathrm{~d} x \\
& =\frac{1}{2 L} \int_{-L}^{L} x e^{-i \omega_{k} x} \mathrm{~d} x \\
& =\frac{1}{2 L}\left\{\left[x \frac{e^{-i \omega_{k} x}}{-i \omega_{k}}\right]_{-L}^{L}-\int_{-L}^{L} \frac{e^{-i \omega_{k} x}}{-i \omega_{k}} \mathrm{~d} x\right\} \\
& =\frac{1}{2 L} \cdot \frac{L e^{-i \omega_{k} L}-(-L) e^{i \omega_{k} L}}{-i \omega_{k}} \quad\left(\text { since } \int_{-L}^{L} e^{-i \omega_{k} x} \mathrm{~d} x=0\right) \\
& =\frac{1}{2 L} \cdot \frac{L e^{-i \frac{k \pi}{L} L}-(-L) e^{i \frac{k \pi}{L} L}}{-i \omega_{k}} \\
& =\frac{1}{2 L} \cdot \frac{L e^{-i k \pi}-(-L) e^{i k \pi}}{-i \omega_{k}} \\
& =\frac{1}{2 L} \cdot \frac{L(-1)^{k}+L(-1)^{k}}{-i \omega_{k}} \\
& =\frac{1}{2 L} \cdot \frac{2 L(-1)^{k}}{-i \omega_{k}} \\
& =\frac{(-1)^{k}}{-i \omega_{k}} \\
& =\frac{1}{\omega_{k}}(-1)^{k} i
\end{aligned}
$$

When $k=0$ we calculate c_{0} as follows.

$$
\begin{aligned}
c_{0} & =\frac{1}{2 L} \int_{-L}^{L} x \mathrm{~d} x \\
& =0
\end{aligned}
$$

So we obtain the series

$$
\sum_{k=-n}^{n} c_{k} e^{i k x}
$$

where

$$
c_{k}=\left\{\begin{array}{cc}
\frac{1}{\omega_{k}}(-1)^{k} i & k \neq 0 \\
0 & k=0
\end{array}\right.
$$

The Fourier series is the limit of the above linear combination as n goes to infinity.

$$
\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} c_{k} e^{i k x}=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
$$

