Exercise 13-1

Isao Sasano

2015 July 7

Exercise The Fourier series $f(x)=x$ on the range $[-\pi, \pi]$ is

$$
\begin{equation*}
\sum_{k=1}^{\infty}-\frac{2}{k}(-1)^{k} \sin k x \tag{1}
\end{equation*}
$$

Rewrite this series in the form of a linear combination of complex exponential functions $\left\{e^{i k x} \mid k \in \mathbb{Z}\right\}$.

Solution 1 By the Euler's formula

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{2}
\end{equation*}
$$

the following equation holds.

$$
\begin{align*}
e^{-i \theta} & =e^{i(-\theta)} \\
& =\cos (-\theta)+i \sin (-\theta) \\
& =\cos \theta-i \sin \theta \tag{3}
\end{align*}
$$

By adding the equations (2) and (3) we obtain the following equation.

$$
e^{i \theta}+e^{-i \theta}=2 \cos \theta
$$

By subtracting the equation (3) from (2) we obtain the following equation.

$$
e^{i \theta}-e^{-i \theta}=2 i \sin \theta
$$

So we obtain the following equations.

$$
\begin{align*}
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \\
& \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \tag{4}
\end{align*}
$$

By setting $\theta=k x$ in (4) we obtain

$$
\sin k x=\frac{e^{i k x}-e^{-i k x}}{2 i}
$$

By substituting RHS of this equation for LHS of this equation in (1) we obtain

$$
\sum_{k=1}^{\infty}-\frac{2}{k}(-1)^{k} \frac{e^{i k x}-e^{-i k x}}{2 i}
$$

We rewrite this series as follows.

$$
\begin{aligned}
\sum_{k=1}^{\infty}-\frac{2}{k}(-1)^{k} \frac{e^{i k x}-e^{-i k x}}{2 i} & =\sum_{k=1}^{\infty}-\frac{1}{k}(-1)^{k} \frac{e^{i k x}-e^{-i k x}}{i} \\
& =\sum_{k=1}^{\infty}-\frac{1}{k}(-1)^{k}(-i)\left(e^{i k x}-e^{-i k x}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k} i\left(e^{i k x}-e^{-i k x}\right) \\
& =\sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i e^{i k x}-\frac{1}{k}(-1)^{k} i e^{-i k x}\right\} \\
& =\sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i e^{i k x}-\frac{1}{k}(-1)^{k} i e^{i(-k) x}\right\} \\
& =\sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i e^{i k x}+\frac{1}{-k}(-1)^{k} i e^{i(-k) x}\right\} \\
& =\sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i e^{i k x}+\frac{1}{-k}(-1)^{-k} i e^{i(-k) x}\right\} \\
& =\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
\end{aligned}
$$

Here c_{k} is defined as follows.

$$
c_{k}=\left\{\begin{array}{cc}
\frac{1}{k}(-1)^{k} i & k>0 \\
0 & k=0 \\
\frac{1}{k}(-1)^{k} i & k<0
\end{array}\right.
$$

Note that $\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$ is defined as follows.

$$
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} c_{k} e^{i k x}
$$

Solution 2 Here we calculate the series directly. Assume the following equation holds. (Note that there are no coefficients $c_{-n}, \ldots, c_{0}, \ldots, c_{n}$ that satisfy the equation, but it's ok.)

$$
f(x)=\sum_{l=-n}^{n} c_{l} e^{i l x}
$$

Multiply $e^{-i k x}$ to the both sides of this equation and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) e^{-i k x} \mathrm{~d} x & =\int_{-\pi}^{\pi} e^{-i k x} \sum_{l=-n}^{n} c_{l} e^{i l x} \mathrm{~d} x \\
& =\int_{-\pi}^{\pi} \sum_{l=-n}^{n} c_{l} e^{i l x} e^{-i k x} \mathrm{~d} x \\
& =\int_{-\pi}^{\pi} \sum_{l=-n}^{n} c_{l} e^{i(l-k) x} \mathrm{~d} x \\
& =\sum_{l=-n}^{n} \int_{-\pi}^{\pi} c_{l} e^{i(l-k) x} \mathrm{~d} x \\
& =\int_{-\pi}^{\pi} c_{k} e^{0} \mathrm{~d} x \\
& =\int_{-\pi}^{\pi} c_{k} \mathrm{~d} x \\
& =2 \pi c_{k}
\end{aligned}
$$

So we obtain c_{k} as follows.

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} \mathrm{~d} x
$$

When $k \neq 0$ we calculate c_{k} as follows.

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} \mathrm{~d} x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i k x} \mathrm{~d} x \\
& =\frac{1}{2 \pi}\left\{\left[x \frac{e^{-i k x}}{-i k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{e^{-i k x}}{-i k} \mathrm{~d} x\right\} \\
& =\frac{1}{2 \pi} \cdot \frac{\pi e^{-i k \pi}-(-\pi) e^{i k \pi}}{-i k} \\
& =\frac{1}{2 \pi} \cdot \frac{\pi(-1)^{k}+\pi(-1)^{k}}{-i k} \\
& =\frac{1}{2 \pi} \cdot \frac{2 \pi(-1)^{k}}{-i k} \\
& =\frac{(-1)^{k}}{-i k} \\
& =\frac{1}{k}(-1)^{k} i
\end{aligned}
$$

When $k=0$ we calculate c_{0} as follows.

$$
\begin{aligned}
c_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{0} \mathrm{~d} x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x \mathrm{~d} x \\
& =0
\end{aligned}
$$

So we obtain the series

$$
\sum_{k=-n}^{n} c_{k} e^{i k x}
$$

where

$$
c_{k}=\left\{\begin{array}{cc}
\frac{1}{k}(-1)^{k} i & k \neq 0 \\
0 & k=0
\end{array}\right.
$$

The Fourier series is the limit of the above linear combination as n goes to infinity.

$$
\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} c_{k} e^{i k x}=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
$$

This is the same as the series obtained in Solution 1.

Comment Here we rewrite the series back to the series (1).

$$
\left.\left.\begin{array}{rl}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}= & \sum_{k=1}^{\infty}\left\{c_{k} e^{i k x}+c_{-k} e^{i(-k) x}\right\} \\
= & \sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i e^{i k x}+\frac{1}{-k}(-1)^{-k} i e^{i(-k) x}\right\} \\
= & \sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i(\cos k x+i \sin k x)\right. \\
& \left.\quad-\frac{1}{k}(-1)^{k} i(\cos k x-i \sin k x)\right\} \\
= & \sum_{k=1}^{\infty}\left\{\frac{1}{k}(-1)^{k} i \cos k x-\frac{1}{k}(-1)^{k} \sin k x\right.
\end{array} \quad-\frac{1}{k}(-1)^{k} i \cos k x-\frac{1}{k}(-1)^{k} \sin k x\right\}\right)
$$

This is the series (1).

