Exercise 12

Isao Sasano

2015 June 30

Exercise Consider the set of real-valued continuous functions on the interval [-1, 1]. As we did in Exercise 9-1, we construct an inner product space where the addition, scalar multiplication, and inner product are defined as follows.

$$(\boldsymbol{f} + \boldsymbol{g})(x) = f(x) + g(x)$$
$$(c\boldsymbol{f})(x) = c(f(x))$$
$$(\boldsymbol{f}, \boldsymbol{g}) = \int_{-1}^{1} f(x)g(x)dx$$

On this inner product space, apply the Gram-Schmidt orthogonalization to the four vectors (functions) $u_1(x) = 1$, $u_2(x) = x$, $u_3(x) = x^2$, $u_4(x) = x^3$.

Solution Let $e_1 = u_1$. So $e_1(x) = 1$.

We let $e_2 = u_2 - c_1 e_1$ and calculate c_1 so that e_2 is orthogonal to e_1 . The inner product of e_1 and e_2 is calculated as follows.

$$(e_1, e_2) = (e_1, u_2 - c_1 e_1)$$

= $(e_1, u_2) - c_1(e_1, e_1)$

We let this be 0. Then we obtain c_1 as follows.

$$c_{1} = \frac{(e_{1}, u_{2})}{(e_{1}, e_{1})}$$
$$= \frac{(1, x)}{(1, 1)}$$
$$= \frac{\int_{-1}^{1} x dx}{\int_{-1}^{1} 1 dx}$$
$$= 0$$

So we obtain e_2 as follows.

$$e_2(x) = x$$

Next we let $e_3 = u_3 - (c_1e_1 + c_2e_2)$ and calculate c_1 and c_2 so that e_3 is orthogonal to e_1 and e_2 . The inner product of e_1 and e_3 is calculated as follows.

$$(e_1, e_3) = (e_1, u_3 - (c_1e_1 + c_2e_2))$$

= $(e_1, u_3) - c_1(e_1, e_1)$

We let this be 0. Then we obtain c_1 as follows.

$$c_{1} = \frac{(e_{1}, u_{3})}{(e_{1}, e_{1})}$$
$$= \frac{(1, x^{2})}{(1, 1)}$$
$$= \frac{\int_{-1}^{1} x^{2} dx}{\int_{-1}^{1} 1 dx}$$
$$= \frac{2/3}{2}$$
$$= \frac{1}{3}$$

The inner product of e_2 and e_3 is calculated as follows.

$$(e_2, e_3) = (e_2, u_3 - (c_1e_1 + c_2e_2))$$

= $(e_2, u_3) - c_2(e_2, e_2)$

We let this be 0. Then we obtain c_2 as follows.

$$c_{2} = \frac{(e_{2}, u_{3})}{(e_{2}, e_{2})}$$
$$= \frac{(x, x^{2})}{(x, x)}$$
$$= \frac{\int_{-1}^{1} x^{3} dx}{\int_{-1}^{1} x^{2} dx}$$
$$= 0$$

So we obtain e_3 as follows.

$$e_3(x) = x^2 - \frac{1}{3}$$

Finally we let $e_4 = u_4 - (c_1e_1 + c_2e_2 + c_3e_3)$ and calculate c_1 , c_2 , and c_3 so that e_4 is orthogonal to e_1 , e_2 , and e_3 . The inner product of e_1 and e_4 is calculated as follows.

$$(e_1, e_4) = (e_1, u_4 - (c_1e_1 + c_2e_2 + c_3e_3)) = (e_1, u_4) - c_1(e_1, e_1)$$

We let this be 0. Then we obtain c_1 as follows.

$$c_{1} = \frac{(e_{1}, u_{4})}{(e_{1}, e_{1})}$$
$$= \frac{(1, x^{3})}{(1, 1)}$$
$$= \frac{\int_{-1}^{1} x^{3} dx}{\int_{-1}^{1} 1 dx}$$
$$= 0$$

The inner product of e_2 and e_4 is calculated as follows.

$$(e_2, e_4) = (e_2, u_4 - (c_1e_1 + c_2e_2 + c_3e_3)) = (e_2, u_4) - c_2(e_2, e_2)$$

We let this be 0. Then we obtain c_2 as follows.

$$c_{2} = \frac{(e_{2}, u_{4})}{(e_{2}, e_{2})}$$
$$= \frac{(x, x^{3})}{(x, x)}$$
$$= \frac{\int_{-1}^{1} x^{4} dx}{\int_{-1}^{1} x^{2} dx}$$
$$= \frac{2/5}{2/3}$$
$$= \frac{3}{5}$$

The inner product of e_3 and e_4 is calculated as follows.

$$(e_3, e_4) = (e_3, u_4 - (c_1e_1 + c_2e_2 + c_3e_3)) = (e_3, u_4) - c_3(e_3, e_3)$$

We let this be 0. Then we obtain c_3 as follows.

$$c_{3} = \frac{(e_{3}, u_{4})}{(e_{3}, e_{3})}$$

$$= \frac{(x^{2} - \frac{1}{3}, x^{3})}{(x^{2} - \frac{1}{3}, x^{2} - \frac{1}{3})}$$

$$= \frac{\int_{-1}^{1} x^{5} - \frac{1}{3}x^{3} dx}{\int_{-1}^{1} x^{4} - \frac{2}{3}x^{2} + \frac{1}{9} dx}$$

$$= 0$$

So we obtain e_4 as follows.

$$e_4(x) = x^3 - \frac{3}{5}x$$

So the orthogonal vectors (functions) obtained from $1, x, x^2, x^3$ by the Gram-Schmidt orthogonalization are as follows.

1,
$$x$$
, $x^2 - \frac{1}{3}$, $x^3 - \frac{3}{5}x$

Note1 The resulting vectors (functions) are not normalized. Of course we may normalize them.

Note2 The obtained vectors (functions) are related to the Legendre polynomials with the following relationship.

$$P_i(x) = \frac{e_{i+1}(x)}{e_{i+1}(1)} \quad (i \ge 0)$$

We check the cases for i = 0, 1, 2, 3.

$$\frac{e_1(x)}{e_1(1)} = \frac{1}{1} \\ = 1 \\ = P_0(x)$$

$$\frac{e_2(x)}{e_2(1)} = \frac{x}{1} \\ = x \\ = P_1(x)$$
$$\frac{e_3(x)}{e_2(1)} = \frac{x^2 - \frac{1}{3}}{\frac{2}{3}}$$

$$\frac{e_3(x)}{e_3(1)} = \frac{x^2 - \frac{1}{3}}{\frac{2}{3}} \\ = (x^2 - \frac{1}{3}) \cdot \frac{3}{2} \\ = \frac{1}{2}(3x^2 - 1) \\ = P_2(x)$$

$$\frac{e_4(x)}{e_4(1)} = \frac{x^3 - \frac{3}{5}x}{1 - \frac{3}{5}}$$
$$= \frac{x^3 - \frac{3}{5}x}{\frac{2}{5}}$$
$$= (x^3 - \frac{3}{5}x) \cdot \frac{5}{2}$$
$$= \frac{1}{2}(5x^3 - 3x)$$
$$= P_3(x)$$