Exercise 12

Isao Sasano

2015 June 30

Exercise Consider the set of real-valued continuous functions on the interval $[-1,1]$. As we did in Exercise 9-1, we construct an inner product space where the addition, scalar multiplication, and inner product are defined as follows.

$$
\begin{aligned}
(\boldsymbol{f}+\boldsymbol{g})(x) & =f(x)+g(x) \\
(c \boldsymbol{f})(x) & =c(f(x)) \\
(\boldsymbol{f}, \boldsymbol{g}) & =\int_{-1}^{1} f(x) g(x) \mathrm{d} x
\end{aligned}
$$

On this inner product space, apply the Gram-Schmidt orthogonalization to the four vectors (functions) $u_{1}(x)=1, u_{2}(x)=x, u_{3}(x)=x^{2}, u_{4}(x)=x^{3}$.

Solution Let $e_{1}=u_{1}$. So $e_{1}(x)=1$.
We let $e_{2}=u_{2}-c_{1} e_{1}$ and calculate c_{1} so that e_{2} is orthogonal to e_{1}. The inner product of e_{1} and e_{2} is calculated as follows.

$$
\begin{aligned}
\left(e_{1}, e_{2}\right) & =\left(e_{1}, u_{2}-c_{1} e_{1}\right) \\
& =\left(e_{1}, u_{2}\right)-c_{1}\left(e_{1}, e_{1}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{1} as follows.

$$
\begin{aligned}
c_{1} & =\frac{\left(e_{1}, u_{2}\right)}{\left(e_{1}, e_{1}\right)} \\
& =\frac{(1, x)}{(1,1)} \\
& =\frac{\int_{-1}^{1} x \mathrm{~d} x}{\int_{-1}^{1} 1 \mathrm{~d} x} \\
& =0
\end{aligned}
$$

So we obtain e_{2} as follows.

$$
e_{2}(x)=x
$$

Next we let $e_{3}=u_{3}-\left(c_{1} e_{1}+c_{2} e_{2}\right)$ and calculate c_{1} and c_{2} so that e_{3} is orthogonal to e_{1} and e_{2}. The inner product of e_{1} and e_{3} is calculated as follows.

$$
\begin{aligned}
\left(e_{1}, e_{3}\right) & =\left(e_{1}, u_{3}-\left(c_{1} e_{1}+c_{2} e_{2}\right)\right) \\
& =\left(e_{1}, u_{3}\right)-c_{1}\left(e_{1}, e_{1}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{1} as follows.

$$
\begin{aligned}
c_{1} & =\frac{\left(e_{1}, u_{3}\right)}{\left(e_{1}, e_{1}\right)} \\
& =\frac{\left(1, x^{2}\right)}{(1,1)} \\
& =\frac{\int_{-1}^{1} x^{2} \mathrm{~d} x}{\int_{-1}^{1} 1 \mathrm{~d} x} \\
& =\frac{2 / 3}{2} \\
& =\frac{1}{3}
\end{aligned}
$$

The inner product of e_{2} and e_{3} is calculated as follows.

$$
\begin{aligned}
\left(e_{2}, e_{3}\right) & =\left(e_{2}, u_{3}-\left(c_{1} e_{1}+c_{2} e_{2}\right)\right) \\
& =\left(e_{2}, u_{3}\right)-c_{2}\left(e_{2}, e_{2}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{2} as follows.

$$
\begin{aligned}
c_{2} & =\frac{\left(e_{2}, u_{3}\right)}{\left(e_{2}, e_{2}\right)} \\
& =\frac{\left(x, x^{2}\right)}{(x, x)} \\
& =\frac{\int_{-1}^{1} x^{3} \mathrm{~d} x}{\int_{-1}^{1} x^{2} \mathrm{~d} x} \\
& =0
\end{aligned}
$$

So we obtain e_{3} as follows.

$$
e_{3}(x)=x^{2}-\frac{1}{3}
$$

Finally we let $e_{4}=u_{4}-\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)$ and calculate c_{1}, c_{2}, and c_{3} so that e_{4} is orthogonal to e_{1}, e_{2}, and e_{3}. The inner product of e_{1} and e_{4} is calculated as follows.

$$
\begin{aligned}
\left(e_{1}, e_{4}\right) & =\left(e_{1}, u_{4}-\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)\right) \\
& =\left(e_{1}, u_{4}\right)-c_{1}\left(e_{1}, e_{1}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{1} as follows.

$$
\begin{aligned}
c_{1} & =\frac{\left(e_{1}, u_{4}\right)}{\left(e_{1}, e_{1}\right)} \\
& =\frac{\left(1, x^{3}\right)}{(1,1)} \\
& =\frac{\int_{-1}^{1} x^{3} \mathrm{~d} x}{\int_{-1}^{1} 1 \mathrm{~d} x} \\
& =0
\end{aligned}
$$

The inner product of e_{2} and e_{4} is calculated as follows.

$$
\begin{aligned}
\left(e_{2}, e_{4}\right) & =\left(e_{2}, u_{4}-\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)\right) \\
& =\left(e_{2}, u_{4}\right)-c_{2}\left(e_{2}, e_{2}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{2} as follows.

$$
\begin{aligned}
c_{2} & =\frac{\left(e_{2}, u_{4}\right)}{\left(e_{2}, e_{2}\right)} \\
& =\frac{\left(x, x^{3}\right)}{(x, x)} \\
& =\frac{\int_{-1}^{1} x^{4} \mathrm{~d} x}{\int_{-1}^{1} x^{2} \mathrm{~d} x} \\
& =\frac{2 / 5}{2 / 3} \\
& =\frac{3}{5}
\end{aligned}
$$

The inner product of e_{3} and e_{4} is calculated as follows.

$$
\begin{aligned}
\left(e_{3}, e_{4}\right) & =\left(e_{3}, u_{4}-\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)\right) \\
& =\left(e_{3}, u_{4}\right)-c_{3}\left(e_{3}, e_{3}\right)
\end{aligned}
$$

We let this be 0 . Then we obtain c_{3} as follows.

$$
\begin{aligned}
c_{3} & =\frac{\left(e_{3}, u_{4}\right)}{\left(e_{3}, e_{3}\right)} \\
& =\frac{\left(x^{2}-\frac{1}{3}, x^{3}\right)}{\left(x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right)} \\
& =\frac{\int_{-1}^{1} x^{5}-\frac{1}{3} x^{3} \mathrm{~d} x}{\int_{-1}^{1} x^{4}-\frac{2}{3} x^{2}+\frac{1}{9} \mathrm{~d} x} \\
& =0
\end{aligned}
$$

So we obtain e_{4} as follows.

$$
e_{4}(x)=x^{3}-\frac{3}{5} x
$$

So the orthogonal vectors (functions) obtained from $1, x, x^{2}, x^{3}$ by the Gram-Schmidt orthogonalization are as follows.

$$
1, x, x^{2}-\frac{1}{3}, x^{3}-\frac{3}{5} x
$$

Note1 The resulting vectors (functions) are not normalized. Of course we may normalize them.
Note2 The obtained vectors (functions) are related to the Legendre polynomials with the following relationship.

$$
P_{i}(x)=\frac{e_{i+1}(x)}{e_{i+1}(1)} \quad(i \geq 0)
$$

We check the cases for $i=0,1,2,3$.

$$
\begin{aligned}
\frac{e_{1}(x)}{e_{1}(1)} & =\frac{1}{1} \\
& =1 \\
& =P_{0}(x)
\end{aligned}
$$

$$
\begin{aligned}
\frac{e_{2}(x)}{e_{2}(1)} & =\frac{x}{1} \\
& =x \\
& =P_{1}(x) \\
\frac{e_{3}(x)}{e_{3}(1)}= & \frac{x^{2}-\frac{1}{3}}{\frac{2}{3}} \\
= & \left(x^{2}-\frac{1}{3}\right) \cdot \frac{3}{2} \\
= & \frac{1}{2}\left(3 x^{2}-1\right) \\
= & P_{2}(x) \\
\frac{e_{4}(x)}{e_{4}(1)}= & \frac{x^{3}-\frac{3}{5} x}{1-\frac{3}{5}} \\
= & \frac{x^{3}-\frac{3}{5} x}{\frac{2}{5}} \\
= & \left(x^{3}-\frac{3}{5} x\right) \cdot \frac{5}{2} \\
= & \frac{1}{2}\left(5 x^{3}-3 x\right) \\
= & P_{3}(x)
\end{aligned}
$$

