Exercise 11

Isao Sasano

June 23, 2015

Exercise Calculate the value of the following series by using the Parseval's equality for the Fourier series of $f(x)=x^{2}$ on the range $[-\pi, \pi]$ following the steps (1)-(5).

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}
$$

(1) Calculate the linear combination of the following orthogonal functions that is closest to the function $f(x)$. As for the measure of the distance, use (the half of) the integral of the square of the difference on the range $[-\pi, \pi]$.

$$
\left\{\frac{1}{2}, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots, \cos n x, \sin n x\right\}
$$

(2) Obtain the Fourier series of $f(x)$ on the range $[-\pi, \pi]$. (The Fourier series of $f(x)=x$ is the limit of the linear combination obtained in (1) as n goes to infinity.)
(3) Normalise the series obtained in (2).
(4) Write down the Parseval's equality for the series obtained in (3).
(5) Calculate the value of the series $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$.

Note that in an inner product space \mathcal{L}, when the approaximation, in the sense of least square, of $\boldsymbol{u} \in \mathcal{L}$ by a linear comination of orthonormal basis $\left\{\boldsymbol{e}_{i} \mid i \geq 1\right\}$ in \mathcal{L}

$$
\sum_{k=1}^{n} c_{k} \boldsymbol{e}_{k}
$$

converges to \boldsymbol{u} in the sense that the norm of the difference converges to 0 as n goes to infinity, the following equation, called Parseval's equality, holds.

$$
\|\boldsymbol{u}\|^{2}=\sum_{k=1}^{\infty} c_{k}^{2}
$$

Solution

(1) Assume the following equation holds. (Note: There are no coefficients $a_{0}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ that satisfy the equation, but it's ok.)

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1}
\end{equation*}
$$

Integrate the both sides of the equation (1) on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \mathrm{d} x & =\int_{-\pi}^{\pi} \frac{1}{2} a_{0} \mathrm{~d} x \\
& =a_{0} \pi
\end{aligned}
$$

Then we calculate a_{0} as follows.

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \mathrm{~d} x \\
& =\frac{2}{3} \pi^{2}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\cos k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x & =a_{k} \int_{-\pi}^{\pi} \cos ^{2} k x \mathrm{~d} x \\
& =a_{k} \pi
\end{aligned}
$$

Then we calculate a_{k} as follows.

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos k x \mathrm{~d} x \\
& =\frac{1}{\pi}\left\{\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} 2 x \frac{\sin k x}{k} \mathrm{~d} x\right\} \\
& =-\frac{2}{\pi k} \int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x \quad\left(\text { since }\left[x^{2} \frac{\sin k x}{k}\right]_{-\pi}^{\pi} \text { is } 0\right)
\end{aligned}
$$

Here we calculate the integral $\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} x \sin k x \mathrm{~d} x & =\left[x \frac{-\cos k x}{k}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \\
& =-\frac{1}{k}[x \cos k x]_{-\pi}^{\pi} \quad\left(\text { since } \int_{-\pi}^{\pi} \frac{-\cos k x}{k} \mathrm{~d} x \text { is } 0\right) \\
& =-\frac{1}{k}(\pi \cos \pi k-(-\pi) \cos (-\pi k)) \\
& =-\frac{1}{k}(\pi \cos \pi k+\pi \cos \pi k) \\
& =-\frac{2 \pi}{k} \cos \pi k \\
& =-\frac{2 \pi}{k}(-1)^{k}
\end{aligned}
$$

We resume the calculation of a_{k}.

$$
\begin{aligned}
a_{k} & =-\frac{2}{\pi k}\left(-\frac{2 \pi}{k}(-1)^{k}\right) \\
& =\frac{4}{k^{2}}(-1)^{k}
\end{aligned}
$$

Multiply the both sides of the equation (1) by $\sin k x$ and integrate them on the range $[-\pi, \pi]$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x & =b_{k} \int_{-\pi}^{\pi} \sin ^{2} k x \mathrm{~d} x \\
& =b_{k} \pi
\end{aligned}
$$

Then we calculate b_{k} as follows.

$$
\begin{aligned}
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin k x \mathrm{~d} x \\
& =0 \quad \text { (since } x^{2} \sin k x \text { is an odd function) }
\end{aligned}
$$

So the linear combination that is closest to the function $f(x)$ is

$$
\frac{2}{3} \pi^{2} \cdot \frac{1}{2}+\sum_{k=1}^{n} \frac{4}{k^{2}}(-1)^{k} \cos k x .
$$

(2) The Fourier expansion of $f(x)=x^{2}$ is the limit of the above linear combination as n goes to infinity:

$$
\frac{2}{3} \pi^{2} \cdot \frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \cos k x .
$$

(3) Firstly we calculate the norm of $\frac{1}{2}$ and $\cos k x$.

$$
\begin{aligned}
\left\|\frac{1}{2}\right\| & =\sqrt{\left(\frac{1}{2}, \frac{1}{2}\right)} \\
& =\sqrt{\int_{-\pi}^{\pi}\left(\frac{1}{2}\right)^{2} \mathrm{~d} x} \\
& =\sqrt{\int_{-\pi}^{\pi} \frac{1}{4} \mathrm{~d} x} \\
& =\sqrt{\left[\frac{1}{4} x\right]_{-\pi}^{\pi}} \\
& =\sqrt{\frac{\pi}{2}} \\
\|\cos k x\| & =\sqrt{(\cos k x, \cos k x)} \\
& =\sqrt{\int_{\pi}^{\pi} \cos ^{2} k x \mathrm{~d} x} \\
& =\sqrt{\pi}
\end{aligned}
$$

So the Fourier series of $f(x)=x^{2}$ is normalized as follows.

$$
\begin{aligned}
& \frac{2}{3} \pi^{2} \cdot \frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \cos k x \\
& \quad=\frac{2}{3} \pi^{2} \sqrt{\frac{\pi}{2}} \cdot \frac{\frac{1}{2}}{\sqrt{\frac{\pi}{2}}}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}(-1)^{k} \sqrt{\pi} \cdot \frac{\cos k x}{\sqrt{\pi}}
\end{aligned}
$$

(4) By the Parseval's equality, we obtain the following equation.

$$
\begin{equation*}
\|f\|^{2}=\left(\frac{2}{3} \pi^{2} \sqrt{\frac{\pi}{2}}\right)^{2}+\sum_{k=1}^{\infty}\left(\frac{4}{k^{2}}(-1)^{k} \sqrt{\pi}\right)^{2} \tag{2}
\end{equation*}
$$

The left hand side of the equation (2) is calculated as follows.

$$
\begin{aligned}
\|f\|^{2} & =(f, f) \\
& =\int_{-\pi}^{\pi} f(x)^{2} \mathrm{~d} x \\
& =\int_{-\pi}^{\pi} x^{4} \mathrm{~d} x \\
& =\left[\frac{x^{5}}{5}\right]_{-\pi}^{\pi} \\
& =\left(\frac{\pi^{5}}{5}-\left(-\frac{\pi^{5}}{5}\right)\right) \\
& =\frac{2}{5} \pi^{5}
\end{aligned}
$$

The right hand side of the equation (2) is calculated as follows.

$$
\begin{aligned}
\text { RHS } & =\left(\frac{2}{3} \pi^{2} \sqrt{\frac{\pi}{2}}\right)^{2}+\sum_{k=1}^{\infty}\left(\frac{4}{k^{2}}(-1)^{k} \sqrt{\pi}\right)^{2} \\
& =\frac{4}{9} \pi^{4} \cdot \frac{\pi}{2}+\sum_{k=1}^{\infty} \frac{16}{k^{4}} \pi \\
& =\frac{2}{9} \pi^{5}+16 \pi \sum_{k=1}^{\infty} \frac{1}{k^{4}}
\end{aligned}
$$

So the Parceval's equality for the Fourier series of $f(x)=x^{2}$ is obtained as follows.

$$
\frac{2}{5} \pi^{5}=\frac{2}{9} \pi^{5}+16 \pi \sum_{k=1}^{\infty} \frac{1}{k^{4}}
$$

(5) The value of the series $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$ is obtained as follows.

$$
\begin{aligned}
16 \pi \sum_{k=1}^{\infty} \frac{1}{k^{4}} & =\frac{2}{5} \pi^{5}-\frac{2}{9} \pi^{5} \\
& =\frac{18}{45} \pi^{5}-\frac{10}{45} \pi^{5} \\
& =\frac{8}{45} \pi^{5}
\end{aligned}
$$

The value of $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$ is obtained as follows.

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{4}} & =\frac{1}{16 \pi} \cdot \frac{8}{45} \pi^{5} \\
& =\frac{1}{90} \pi^{4}
\end{aligned}
$$

(Note) The obtained value $\frac{1}{90} \pi^{4}$ is the value of the zeta function $\zeta(n)$ when $n=4$. The zeta function is given as follows.

$$
\zeta(n)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}
$$

So $\zeta(4)=\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{1}{90} \pi^{4}$.

