Three solutions for Exercise 10-2

Isao Sasano

2015 June 16

Exercise Consider the set of real-valued continuous functions on the interval $[-\pi, \pi]$. As we did in Exercise 9-1, we construct an inner product space where the addition, scalar multiplication, and inner product are defined as follows.

$$
\begin{aligned}
(\boldsymbol{f}+\boldsymbol{g})(x) & =f(x)+g(x) \\
(c \boldsymbol{f})(x) & =c(f(x)) \\
(\boldsymbol{f}, \boldsymbol{g}) & =\int_{-\pi}^{\pi} f(x) g(x) \mathrm{d} x
\end{aligned}
$$

On this inner product space, approximate a function $f(x)=x^{2}$ by a linear combination of the functions $e_{1}(x)=\frac{1}{2}, e_{2}(x)=\cos x$, and $e_{3}(x)=\sin x$. (i.e., $\sum_{k=1}^{3} c_{k} e_{k}(x)=c_{1} e_{1}(x)+c_{2} e_{2}(x)+c_{3} e_{3}(x)$ for some c_{1}, c_{2}, and c_{3}). That is, obtain c_{1}, c_{2}, c_{3} so that $c_{1} e_{1}(x)+c_{2} e_{2}(x)+c_{3} e_{3}(x)$ is closest to $f(x)$. As for the measure of the distance, use (the half of) the square of the norm of the difference of $c_{1} e_{1}(x)+c_{2} e_{2}(x)+c_{3} e_{3}(x)$ and $f(x)$.

$$
J=\frac{1}{2}\left\|\sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}-\boldsymbol{f}\right\|^{2}
$$

The norm is defined as follows.

$$
\|\boldsymbol{f}\|=\sqrt{(\boldsymbol{f}, \boldsymbol{f})}=\sqrt{\int_{-\pi}^{\pi} f(x)^{2} \mathrm{~d} x}
$$

We show three solutions. One is by solving $\frac{\partial J}{\partial c_{i}}=0$ for $i=1,2,3$. Another is by considering the special case. The other is by calculating the projection of \boldsymbol{f} on the subspace spanned by $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3}.

Solution 1 Firstly calculate J as follows.

$$
\begin{aligned}
J & =\frac{1}{2}\left\|\sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}-\boldsymbol{f}\right\|^{2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}-\boldsymbol{f}, \sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}-\boldsymbol{f}\right) \\
& =\frac{1}{2}\left\{\left(\sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}, \sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}\right)-2\left(\boldsymbol{f}, \sum_{k=1}^{3} c_{k} \boldsymbol{e}_{k}\right)+\|\boldsymbol{f}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\sum_{k, l=1}^{3} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \sum_{k=1}^{3} c_{k}\left(\boldsymbol{f}, \boldsymbol{e}_{k}\right)+\|\boldsymbol{f}\|^{2}\right\}
\end{aligned}
$$

Partially differentiate this with respect to $c_{i}(i=1,2,3)$.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{i}} & =\frac{\partial}{\partial c_{i}} \frac{1}{2}\left\{\sum_{k, l=1}^{3} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \sum_{k=1}^{3} c_{k}\left(\boldsymbol{f}, \boldsymbol{e}_{k}\right)+\|\boldsymbol{f}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\frac{\partial}{\partial c_{i}} \sum_{k, l=1}^{3} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \frac{\partial}{\partial c_{i}} \sum_{k=1}^{3} c_{k}\left(\boldsymbol{f}, \boldsymbol{e}_{k}\right)\right\} \\
& =\frac{1}{2}\left\{2 \sum_{k=1}^{3} c_{k}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right)-2\left(\boldsymbol{f}, \boldsymbol{e}_{i}\right)\right\} \\
& =\sum_{k=1}^{3} c_{k}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right)-\left(\boldsymbol{f}, \boldsymbol{e}_{i}\right)
\end{aligned}
$$

By writing $\frac{\partial J}{\partial c_{i}}=0$ for $i=1,2,3$ in matrix form we obtain

$$
\left(\begin{array}{lll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{f}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)
\end{array}\right)
$$

Since $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3} are orthogonal to each other, we obtain

$$
\left(\begin{array}{ccc}
\left\|\boldsymbol{e}_{1}\right\|^{2} & 0 & 0 \\
0 & \left\|\boldsymbol{e}_{2}\right\|^{2} & 0 \\
0 & 0 & \left\|\boldsymbol{e}_{3}\right\|^{2}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{f}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)
\end{array}\right)
$$

Hence we obtain $c_{i}=\frac{\left(\boldsymbol{f}, \boldsymbol{e}_{i}\right)}{\left\|\boldsymbol{e}_{i}\right\|^{2}}$ for $i=1,2,3$.

$$
\begin{aligned}
\left(\boldsymbol{f}, \boldsymbol{e}_{1}\right) & =\int_{-\pi}^{\pi} \frac{x^{2}}{2} \mathrm{~d} x=\left[\frac{x^{3}}{6}\right]_{-\pi}^{\pi}=\frac{\pi^{3}}{3} \\
\left(\boldsymbol{f}, \boldsymbol{e}_{2}\right) & =\int_{-\pi}^{\pi} x^{2} \cos x \mathrm{~d} x \\
& =\left[x^{2} \frac{\sin x}{-1}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} 2 x \frac{\sin x}{-1} \mathrm{~d} x \\
& =2 \int_{-\pi}^{\pi} x \sin x \mathrm{~d} x \\
& =2\left\{[x \cos x]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \cos x \mathrm{~d} x\right\} \\
& =2\{\pi \cos \pi-(-\pi) \cos (-\pi)\} \\
& =2\{2 \pi \cos \pi\} \\
& =4 \pi \cos \pi \\
& =-4 \pi \\
\left(\boldsymbol{f}, \boldsymbol{e}_{3}\right) & =\int_{-\pi}^{\pi} x^{2} \sin x \mathrm{~d} x=0 \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & =\int_{-\pi}^{\pi} \frac{1}{4} \mathrm{~d} x=\left[\frac{x}{4}\right]_{-\pi}^{\pi}=\frac{\pi}{2} \\
\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right) & =\int_{-\pi}^{\pi} \cos { }^{2} x \mathrm{~d} x=\pi
\end{aligned}
$$

So we obtain

$$
\begin{aligned}
& c_{1}=\frac{\frac{\pi^{3}}{3}}{\frac{2}{\pi}}=\frac{2}{3} \pi^{2} \\
& c_{2}=\frac{-4 \pi}{\pi}=-4 \\
& c_{3}=0
\end{aligned}
$$

Thus the linear combination is obtained as follows.

$$
\frac{2}{3} \pi^{2} \boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}
$$

This vector represents the following function.

$$
\left(\frac{2}{3} \pi^{2} \boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}\right)(x)=\frac{2}{3} \pi^{2} e_{1}(x)-4 e_{2}(x)
$$

$$
=\frac{1}{3} \pi^{2}-4 \cos x
$$

Notice that the function consists of the terms up to the terms of $\cos x$ and $\sin x$ in the Fourier series of $f(x)$.

Solution 2 Assume the following equation holds.

$$
f=c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}
$$

(There is actually no coefficients c_{1}, c_{2}, and c_{3} that satisfy the equation, but it's ok.) Take the inner produce with $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3} in the both side.

$$
\begin{aligned}
& \left(\boldsymbol{f}, \boldsymbol{e}_{1}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{2}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{aligned}
$$

We write the above three equations in the matrix form.

$$
\left(\begin{array}{lll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{f}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)
\end{array}\right)
$$

Notice that this is the same as the one obtained in Solution 1. So we omit the remaining calculation.

Solution 3

A linear combination of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3} is written as $c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}$. It is closest to f when it is the projection of f on the subspace spanned by \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, and \boldsymbol{e}_{3}. That is, the vector $f-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}\right)$ is orthogonal to the subspace spanned by $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3}. So the following two equations should hold.

$$
\begin{aligned}
& \left(f-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}\right), \boldsymbol{e}_{1}\right)=0 \\
& \left(f-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}\right), \boldsymbol{e}_{2}\right)=0 \\
& \left(f-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}\right), \boldsymbol{e}_{3}\right)=0
\end{aligned}
$$

We expand the inner product in each of the equations.

$$
\begin{aligned}
& \left(\boldsymbol{f}, \boldsymbol{e}_{1}\right)-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right)=0 \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{2}\right)-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right)=0 \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)=0
\end{aligned}
$$

We move the second inner product into RHS in each of the equations.

$$
\begin{aligned}
& \left(\boldsymbol{f}, \boldsymbol{e}_{1}\right)=\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{2}\right)=\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)=\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+c_{3} \boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{aligned}
$$

We expand the inner product in the RHS in each of the equations.

$$
\begin{aligned}
& \left(\boldsymbol{f}, \boldsymbol{e}_{1}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{2}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
& \left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)+c_{3}\left(\boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{aligned}
$$

We write the above three equations in the matrix form.

$$
\left(\begin{array}{lll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right) & \left(\boldsymbol{e}_{3}, \boldsymbol{e}_{3}\right)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{f}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{2}\right) \\
\left(\boldsymbol{f}, \boldsymbol{e}_{3}\right)
\end{array}\right)
$$

Notice that this is the same as the one obtained in Solution 1 and 2. So we omit the remaining calculation.

