Three solutions for Exercise 10-1

Isao Sasano

2015 June 16

Exercise Approximate a column vector $\boldsymbol{u}=\left(\begin{array}{l}4 \\ 3 \\ 3\end{array}\right)$ by a linear combination of the column vectors $\boldsymbol{e}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\boldsymbol{e}_{2}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ (i.e., $\sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}=c_{1} \boldsymbol{e}_{1}+$ $c_{2} \boldsymbol{e}_{2}$ for some c_{1} and c_{2}). That is, obtain c_{1} and c_{2} so that $c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}$ is closest to \boldsymbol{u}. As for the measure of the distance, use (the half of) the square of the norm of the difference of $c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}$ and \boldsymbol{u}.

$$
J=\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}-\boldsymbol{u}\right\|^{2}
$$

The norm of a column vector $\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is defined as follows.

$$
\|\boldsymbol{x}\|=\sqrt{(\boldsymbol{x}, \boldsymbol{x})}=\sqrt{\sum_{k=1}^{3} x_{k}^{2}}
$$

We show three solutions. One is by solving $\frac{\partial J}{\partial c_{i}}=0$ for $i=1,2$, as we did in Exercise 4. Another is by considering the special case. The other is by calculating the projection of \boldsymbol{u} on the subspace spanned by \boldsymbol{e}_{1} and \boldsymbol{e}_{2}.

Solution 1 Firstly calculate J as follows.

$$
\begin{aligned}
J & =\frac{1}{2}\left\|\sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}-\boldsymbol{u}\right\|^{2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}-\boldsymbol{u}, \sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}-\boldsymbol{u}\right) \\
& =\frac{1}{2}\left\{\left(\sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}, \sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}\right)-2\left(\boldsymbol{u}, \sum_{k=1}^{2} c_{k} \boldsymbol{e}_{k}\right)+\|\boldsymbol{u}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}, \boldsymbol{e}_{k}\right)+\|\boldsymbol{u}\|^{2}\right\}
\end{aligned}
$$

Partially differenciate this with recpect to $c_{i}(i=1,2)$.

$$
\begin{aligned}
\frac{\partial J}{\partial c_{i}} & =\frac{\partial}{\partial c_{i}} \frac{1}{2}\left\{\sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}, \boldsymbol{e}_{k}\right)+\|\boldsymbol{u}\|^{2}\right\} \\
& =\frac{1}{2}\left\{\frac{\partial}{\partial c_{i}} \sum_{k, l=1}^{2} c_{k} c_{l}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)-2 \frac{\partial}{\partial c_{i}} \sum_{k=1}^{2} c_{k}\left(\boldsymbol{u}, \boldsymbol{e}_{k}\right)\right\} \\
& =\frac{1}{2}\left\{2 \sum_{k=1}^{2} c_{k}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right)-2\left(\boldsymbol{u}, \boldsymbol{e}_{i}\right)\right\} \\
& =\sum_{k=1}^{2} c_{k}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right)-\left(\boldsymbol{u}, \boldsymbol{e}_{i}\right)
\end{aligned}
$$

By writing $\frac{\partial J}{\partial c_{1}}=0$ and $\frac{\partial J}{\partial c_{2}}=0$ in matrix form, we obtain

$$
\left(\begin{array}{ll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)}{\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)}
$$

Since \boldsymbol{e}_{1} and \boldsymbol{e}_{2} are orthogonal, we obtain

$$
\left(\begin{array}{cc}
\left\|\boldsymbol{e}_{1}\right\|^{2} & 0 \\
0 & \left\|\boldsymbol{e}_{2}\right\|^{2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)}{\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)} .
$$

Hence we obtain $c_{1}=\frac{\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)}{\left\|\boldsymbol{e}_{1}\right\|^{2}}=\frac{10}{3}$ and $c_{2}=\frac{\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)}{\left\|\boldsymbol{e}_{2}\right\|^{2}}=\frac{1}{2}$. Thus the linear
combination of \boldsymbol{e}_{1} and \boldsymbol{e}_{2} that is closest to the vector \boldsymbol{u} is obtained as follows.

$$
c_{1} \boldsymbol{e}_{1}+c_{1} \boldsymbol{e}_{2}=\frac{10}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
23 / 6 \\
10 / 3 \\
17 / 6
\end{array}\right)
$$

Solution 2 Assume the following equation holds.

$$
\boldsymbol{u}=c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}
$$

(There is actually no coefficients c_{1} and c_{2} that satisfy the equation, but it's ok.) Take the inner produce with \boldsymbol{e}_{1} and \boldsymbol{e}_{2} in the both side.

$$
\begin{aligned}
& \left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
& \left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)=c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{aligned}
$$

We write the above two equations in the matrix form.

$$
\left(\begin{array}{ll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)}{\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)}
$$

Notice that this is the same as the one obtained in Solution 1. So we omit the remaining calculation.

Solution 3

A linear combination of \boldsymbol{e}_{1} and \boldsymbol{e}_{2} is written as $c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}$. It is closest to \boldsymbol{u} when it is the projection of \boldsymbol{u} on the subspace spanned by \boldsymbol{e}_{1} and \boldsymbol{e}_{2}. That is, the vector $\boldsymbol{u}-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}\right)$ is orthogonal to the subspace spanned by \boldsymbol{e}_{1} and \boldsymbol{e}_{2}. So the following two equations should hold.

$$
\begin{aligned}
& \left(\boldsymbol{u}-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}\right), \boldsymbol{e}_{1}\right)=0 \\
& \left(\boldsymbol{u}-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}\right), \boldsymbol{e}_{2}\right)=0
\end{aligned}
$$

We expand the inner product in each of the equations.

$$
\begin{aligned}
& \left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right)=0 \\
& \left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)-\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)=0
\end{aligned}
$$

We move the second inner product into RHS in each of the equations.

$$
\begin{aligned}
& \left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)=\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
& \left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)=\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{aligned}
$$

We expand the inner product in the RHS in each of the equations.

$$
\begin{aligned}
\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right) & =c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right) & =c_{1}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)+c_{2}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{aligned}
$$

We write the above two equations in the matrix form.

$$
\left(\begin{array}{ll}
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right) \\
\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) & \left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\left(\boldsymbol{u}, \boldsymbol{e}_{1}\right)}{\left(\boldsymbol{u}, \boldsymbol{e}_{2}\right)}
$$

Notice that this is the same as the one obtained in Solution 1 and 2. So we omit the remaining calculation.

