An introduction to discrete Fourier transforms

Isao Sasano

2015 July 14

This document is largely based on the reference book [1] with some parts slightly changed.

1 Discrete Fourier Transform (DFT)

Let $f(x)$ be a periodic function of period 2π. Assume that $f(x)$ is given only in terms of values at the following N points on the range $[0,2 \pi]$:

$$
\begin{equation*}
x_{l}=\frac{2 \pi l}{N} \quad(l=0,1, \ldots, N-1) . \tag{1}
\end{equation*}
$$

We say that $f(x)$ is being sampled at these points. We now would like to find a linear combination of complex exponential functions $\left\{e^{i k x} \mid 0 \leq k \leq N-1\right\}$

$$
\sum_{k=0}^{N-1} F_{k} e^{i k x}
$$

that interpolates $f(x)$ at the nodes (1).

$$
f\left(x_{l}\right)=\sum_{k=0}^{N-1} F_{k} e^{i k x_{l}} \quad(l=0,1, \ldots, N-1)
$$

Let $f_{l}=f\left(x_{l}\right)$. Then we would like to find the coefficients F_{0}, \ldots, F_{N-1} such that the following equation holds.

$$
\begin{equation*}
f_{l}=\sum_{k=0}^{N-1} F_{k} e^{i k x_{l}} \quad(l=0,1, \ldots, N-1) \tag{2}
\end{equation*}
$$

We multiply the both sides of the equation (2) by $e^{-i m x_{k}}$ and sum over l from 0 to $N-1$.

$$
\begin{aligned}
\sum_{l=0}^{N-1} f_{l} e^{-i m x_{l}} & =\sum_{l=0}^{N-1} \sum_{k=0}^{N-1} F_{k} e^{i k x_{l}} e^{-i m x_{l}} \\
& =\sum_{l=0}^{N-1} \sum_{k=0}^{N-1} F_{k} e^{i(k-m) x_{l}} \\
& =\sum_{l=0}^{N-1} \sum_{k=0}^{N-1} F_{k} e^{i(k-m) 2 \pi l / N} \\
& =\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F_{k} e^{i(k-m) 2 \pi l / N} \\
& =\sum_{k=0}^{N-1} F_{k} \sum_{l=0}^{N-1} e^{i(k-m) 2 \pi l / N}
\end{aligned}
$$

Let $r=e^{i(k-m) 2 \pi / N}$. Then

$$
e^{i(k-m) 2 \pi l / N}=\left(e^{i(k-m) 2 \pi / N}\right)^{l}=r^{l}
$$

So the above sum is written as follows.

$$
\sum_{l=0}^{N-1} f_{l} e^{-i m x_{l}}=\sum_{k=0}^{N-1} F_{k} \sum_{l=0}^{N-1} r^{l}
$$

When $k=m$, we have $r=e^{0}=1$, so the sum $\sum_{l=0}^{N-1} r^{l}$ is calculated as follows.

$$
\sum_{l=0}^{N-1} r^{l}=\sum_{l=0}^{N-1} 1=N
$$

When $k \neq m$, we have $r \neq 1$, so the sum $\sum_{l=0}^{N-1} r^{l}$ is calculated as follows.

$$
\sum_{l=0}^{N-1} r^{l}=\frac{1-r^{N}}{1-r}=0
$$

Note that

$$
r^{N}=\left(e^{i(k-m) 2 \pi / N}\right)^{N}=e^{i(k-m) 2 \pi}=1
$$

So we obtain the following equality.

$$
F_{k} \sum_{l=0}^{N-1} r^{l}= \begin{cases}F_{m} N & k=m \\ 0 & k \neq m\end{cases}
$$

So we obtain

$$
\sum_{k=0}^{N-1} F_{k} \sum_{l=0}^{N-1} r^{l}=F_{m} N .
$$

Since $\sum_{l=0}^{N-1} f_{l} e^{-i m x_{l}}=\sum_{k=0}^{N-1} F_{k} \sum_{l=0}^{N-1} r^{l}$ we obtain

$$
\sum_{l=0}^{N-1} f_{l} e^{-i m x_{l}}=F_{m} N
$$

By dividing by N we obtain

$$
F_{m}=\frac{1}{N} \sum_{l=0}^{N-1} f_{l} e^{-i m x_{l}}
$$

By writing k for m we obtain

$$
\begin{equation*}
F_{k}=\frac{1}{N} \sum_{l=0}^{N-1} f_{l} e^{-i k x_{l}}=\frac{1}{N} \sum_{l=0}^{N-1} f_{l} e^{-i 2 \pi k l / N} \quad k=0, \ldots, N-1 . \tag{3}
\end{equation*}
$$

The sequence F_{0}, \ldots, F_{N-1} is called the discrete Fourier transform of the given signal f_{0}, \ldots, f_{N-1}.

Let $\omega=e^{2 \pi i / N}$. Then the discrete Fourier transform is written in matrix form as follows.

$$
\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
\vdots \\
F_{N-1}
\end{array}\right)=\frac{1}{N}\left(\begin{array}{ccccc}
\omega^{0} & \omega^{0} & \omega^{0} & \cdots & \omega^{0} \\
\omega^{0} & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(N-1)} \\
\omega^{0} & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
\omega^{0} & \omega^{-(N-1)} & \omega^{-2(N-1)} & \cdots & \omega^{-(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{N-1}
\end{array}\right)
$$

Note that the element of l-th row and k-th column in the matrix is

$$
e^{-i k x_{l}}=e^{-i 2 \pi k l / N}=\omega^{-l k}
$$

By the formula (2), we obtain

$$
\begin{equation*}
f_{l}=\sum_{k=0}^{N-1} F_{k} e^{i k x_{l}}=\sum_{k=0}^{N-1} F_{k} e^{i 2 \pi k l / N} \quad(l=0,1, \ldots, N-1), \tag{4}
\end{equation*}
$$

which gives the transformation from the sequence F_{0}, \ldots, F_{N-1} to the sequence f_{0}, \ldots, f_{N-1}. It is called the inverse discrete Fourier transform. The inverse discrete Fourier transform is written in matrix form as follows.

$$
\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{N-1}
\end{array}\right)=\left(\begin{array}{ccccc}
\omega^{0} & \omega^{0} & \omega^{0} & \cdots & \omega^{0} \\
\omega^{0} & \omega^{1} & \omega^{2} & \cdots & \omega^{N-1} \\
\omega^{0} & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
\omega^{0} & \omega^{(N-1)} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
\vdots \\
F_{N-1}
\end{array}\right)
$$

Note that the element of l-th row and k-th column in the matrix is

$$
e^{i k x_{l}}=e^{i 2 \pi k l / N}=\omega^{l k}
$$

The inverse discrete Fourier transform of the discrete Fourier transform of a given signal is the signal itself, since the following equation holds.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
\omega^{0} & \omega^{0} & \omega^{0} & \cdots & \omega^{0} \\
\omega^{0} & \omega^{1} & \omega^{2} & \cdots & \omega^{N-1} \\
\omega^{0} & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
\omega^{0} & \omega^{(N-1)} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right)^{-1} \\
& =\frac{1}{N}\left(\begin{array}{ccccc}
\omega^{0} & \omega^{0} & \omega^{0} & \cdots & \omega^{0} \\
\omega^{0} & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(N-1)} \\
\omega^{0} & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
\omega^{0} & \omega^{-(N-1)} & \omega^{-2(N-1)} & \cdots & \omega^{-(N-1)(N-1)}
\end{array}\right)
\end{aligned}
$$

We do not prove this equation. Refer to textbooks like [1]. Note that A^{-1} represents the inverse matrix of A.

Example: the case for $N=4$.
Calculate the discrete Fourier transform of the following signal.

$$
\boldsymbol{f}=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)
$$

Since $N=4, \omega=e^{2 \pi i / 4}=e^{\pi i / 2}=i$ and thus $\omega^{-l k}=i^{-l k}$. So the discrete Fourier transform of \boldsymbol{f} is calculated as follows.

$$
\begin{aligned}
\left(\begin{array}{cccc}
\omega^{0} & \omega^{0} & \omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{-1} & \omega^{-2} & \omega^{-3} \\
\omega^{0} & \omega^{-2} & \omega^{-4} & \omega^{-6} \\
\omega^{0} & \omega^{-3} & \omega^{-6} & \omega^{-9}
\end{array}\right) \boldsymbol{f} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right)\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right) \\
& =\left(\begin{array}{c}
f_{1}+f_{2}+f_{3}+f_{4} \\
f_{1}-i f_{2}-f_{3}+i f_{4} \\
f_{1}-f_{2}+f_{3}-f_{4} \\
f_{1}+i f_{2}-f_{3}-i f_{4}
\end{array}\right)
\end{aligned}
$$

2 Fast Fourier Transform (FFT)

The discrete Fourier transform is just a multiplication of a matrix to the given sequence of signal. Naively computing the matrix multiplication requires $O\left(N^{2}\right)$ operations. However, the discrete Fourier transform can be done by the fast Fourier transform (FFT), which needs only $O\left(N \log _{2} N\right)$ operations. FFT utilizes some specific properties of the matrices.

In computing the discrete Fourier transform and the inverse discrete Fourier transform, it is essential to compute the sequence b_{0}, \ldots, b_{N-1} from any sequence a_{0}, \ldots, a_{N-1} as follows.

$$
\begin{equation*}
b_{k}=\sum_{l=0}^{N-1} a_{l} \omega^{k l} \quad k=0, \ldots, N-1 \tag{5}
\end{equation*}
$$

Let's check this. In order to compute f_{0}, \ldots, f_{N-1} from F_{0}, \ldots, F_{N-1} following (3), we set $a_{k}=F_{k}$ in the equation (5) so that we obtain $f_{l}=b_{l}$.

As for the inverse discrete Fourier transformation, we rewrite the formula (3) as follows.

$$
\frac{1}{N} \sum_{l=0}^{N-1} f_{l} \omega^{-k l}=\frac{1}{N} \overline{\sum_{l=0}^{N-1} \overline{f_{l}} \omega^{k l}}
$$

We can show this equation by transforming RHS to LHS as follows.

$$
\begin{aligned}
\mathrm{RHS} & =\frac{1}{N} \sum_{l=0}^{\overline{N-1} \overline{f_{l}} \omega^{k l}} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} \overline{\overline{f_{l}} \omega^{k l}} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f_{l} \overline{\omega^{k l}} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f_{l} \bar{\omega}^{k l} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f_{l}\left(\omega^{-1}\right)^{k l} \quad\left(\text { since } \bar{\omega}=\omega^{-1}\right) \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f_{l} \omega^{-k l} \\
& =\mathrm{LHS}
\end{aligned}
$$

Then we set $a_{l}=\overline{f_{l}}$ in (5) so that we obtain $F_{k}=\frac{1}{N} \overline{b_{k}}$.
Now we consider the cases where N is a number that satisfies

$$
N=2^{n}
$$

for some natural number n. In these cases we can efficiently compute the discrete Fourier transform and the inverse discrete Fourier transform.

When N is an even number, the following equations hold.

$$
\omega^{N / 2}=-1, \omega^{N / 2+1}=-\omega, \omega^{N / 2+2}=-\omega^{2}, \ldots, \omega^{N-1}=-\omega^{N / 2-1}
$$

We show these equations. Since $\omega=e^{2 \pi i / N}$, we obtain

$$
\omega^{N / 2}=\left(e^{2 \pi i / N}\right)^{N / 2}=e^{i \pi}=-1
$$

and hence

$$
\omega^{N / 2+k}=\omega^{N / 2} \omega^{k}=-\omega^{k} .
$$

In the following we write $\omega=e^{2 \pi i / N}$ by parameterizing N as follows.

$$
\omega_{N}=e^{2 \pi i / N}
$$

Then the following equation holds when N is an even number.

$$
\omega_{N}^{2}=\omega_{N / 2}
$$

We show this as follows.

$$
\omega_{N}^{2}=\left(e^{2 \pi i / N}\right)^{2}=e^{4 \pi i / N}=e^{2 \pi i /(N / 2)}=\omega_{N / 2}
$$

By defining

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{N-1} x^{N-1}=\sum_{l=0}^{N-1} a_{l} x^{l} \tag{6}
\end{equation*}
$$

the formula (5) can be written as follows.

$$
b_{k}=f\left(\omega_{N}^{k}\right) \quad(k=0, \ldots, N-1)
$$

So we obtain b_{0}, \ldots, b_{N-1} by computing $f(1), \ldots, f\left(\omega_{N}^{N-1}\right)$. Let us write this computation as $\mathrm{FFT}_{N}[f(x)]$.

$$
\operatorname{FFT}_{N}[f(x)]=\left\{f(1), f\left(\omega_{N}\right), f\left(\omega_{N}^{2}\right), \ldots, f\left(\omega_{N}^{N-1}\right)\right\}
$$

where $f(1), f\left(\omega_{N}\right), f\left(\omega_{N}^{2}\right), \ldots, f\left(\omega_{N}^{N-1}\right)$ represent the values to compute. The formula (6) can be rewritten as follows.

$$
\begin{aligned}
f(x)= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{N-2} x^{N-2} \\
& +x\left(a_{1}+a_{3} x^{2}+a_{5} x^{4}+\cdots+a_{N-1} x^{N-2}\right) \\
= & p\left(x^{2}\right)+x q\left(x^{2}\right)
\end{aligned}
$$

Here $p(x)$ and $q(x)$ are defined as follows.

$$
\begin{aligned}
& p(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{N-2} x^{N / 2-1} \\
& q(x)=a_{1}+a_{3} x^{2}+a_{5} x^{4}+\cdots+a_{N-1} x^{N / 2-1}
\end{aligned}
$$

Then $\mathrm{FFT}_{N}\left[p\left(x^{2}\right)\right]$ is as follows.

$$
\operatorname{FFT}_{N}\left[p\left(x^{2}\right)\right]=\left\{p(1), p\left(\omega_{N}^{2}\right), p\left(\omega_{N}^{4}\right), \ldots, p\left(\omega_{N}^{2 N-2}\right)\right\}
$$

Here it is suffice to compute the first half of this sequence since the second half is the same as the first half.

$$
\operatorname{FFT}_{N}\left[p\left(x^{2}\right)\right]=\left\{p(1), p\left(\omega_{N}^{2}\right), p\left(\omega_{N}^{4}\right), \ldots, p\left(\omega_{N}^{N-2}\right)\right\}
$$

Since $\omega_{N}^{2}=\omega_{N / 2}$, we obtain

$$
\operatorname{FFT}_{N}\left[p\left(x^{2}\right)\right]=\left\{p(1), p\left(\omega_{N / 2}\right), p\left(\omega_{N / 2}^{2}\right), \ldots, p\left(\omega_{N / 2}^{N / 2-1}\right)\right\}
$$

and hence

$$
\operatorname{FFT}_{N}\left[p\left(x^{2}\right)\right]=\operatorname{FFT}_{N / 2}[p(x)]
$$

In the same way, we obtain

$$
\operatorname{FFT}_{N}\left[q\left(x^{2}\right)\right]=\operatorname{FFT}_{N / 2}[q(x)]
$$

By using the result of $\operatorname{FFT}_{N / 2}[p(x)]$ and $\mathrm{FFT}_{N / 2}[q(x)], f\left(\omega_{N}^{k}\right)$ for $k=$ $0,1,2, \ldots, N-1$ can be computed as follows.

$$
\left\{\begin{align*}
f\left(\omega_{N}^{k}\right) & =p\left(\omega_{N / 2}^{k}\right)+\omega_{N}^{k} q\left(\omega_{N / 2}^{k}\right) & & k=0,1, \ldots, N / 2-1 \tag{7}\\
f\left(\omega_{N}^{N / 2+k}\right) & =p\left(\omega_{N / 2}^{k}\right)-\omega_{N}^{k} q\left(\omega_{N / 2}^{k}\right) & & k=0,1, \ldots, N / 2-1
\end{align*}\right.
$$

So the computation $\operatorname{FFT}[f(x)]$ can be decomposed into two computations $\mathrm{FFT}_{N / 2}[p(x)]$ and $\mathrm{FFT}_{N / 2}[q(x)]$ and the computation (7). This gives the fast Fourier transform.

A Some equations for complex numbers

Here we show some equations for complex numbers.
Theorem 1 For any $z_{1}, z_{2} \in \mathbb{C}$ the following equation holds.

$$
\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}
$$

Proof Let $z_{1}=a+b i$ and $z_{2}=c+d i$ where $a, b, c, d \in \mathbb{R}$. Then

$$
\begin{aligned}
\text { LHS } & =\overline{z_{1} z_{2}} \\
& =\overline{(a+b i)(c+d i)} \\
& =\overline{(a c-b d)+(a d+b c) i} \\
& =(a c-b d)-(a d+b c) i \\
\text { RHS } & =\overline{z_{1}} \cdot \overline{z_{2}} \\
& =\overline{(a+b i)} \cdot \overline{(c+d i)} \\
& =(a-b i)(c-d i) \\
& =(a c-b d)-(a d+b c) i
\end{aligned}
$$

Theorem 2 For any $z_{1}, z_{2} \in \mathbb{C}$ the following equation holds.

$$
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}
$$

Proof Let $z_{1}=a+b i$ and $z_{2}=c+d i$ where $a, b, c, d \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathrm{LHS} & =\overline{z_{1}+z_{2}} \\
& =\overline{(a+b i+(c+d i)} \\
& =\overline{(a+c)+(b+d) i} \\
& =(a+c)-(b+d) i \\
\mathrm{RHS} & =\overline{z_{1}}+\overline{z_{2}} \\
& =\overline{(a+b i)}+\overline{(c+d) i} \\
& =(a-b i)+(c-d i) \\
& =(a+c)-(b+d) i
\end{aligned}
$$

References

[1] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley \& Sons Ltd., tenth edition, 2011.

