The recurrence formula for Chebyshev polynomials

Isao Sasano

May 26, 2015

Chebyshev polynomial $T_{n}(x)$ is obtained by substituting x for $\cos \theta$ in a formula which is obtained by expressing $\cos n \theta$ in a polynomial of $\cos \theta$. Hence the following equation holds.

$$
T_{n}(\cos \theta)=\cos n \theta \quad(n=1,2, \ldots)
$$

By applying the addition theorem of cosine we obtain the following equation.

$$
\begin{aligned}
\cos (n+2) \theta & =\cos \{(n+1) \theta+\theta\} \\
& =\cos (n+1) \theta \cos \theta-\sin (n+1) \theta \sin \theta
\end{aligned}
$$

By applying the addition theorem of cosine we also obtain the following equation.

$$
\begin{aligned}
\cos n \theta & =\cos \{(n+1) \theta-\theta\} \\
& =\cos (n+1) \theta \cos \theta+\sin (n+1) \theta \sin \theta
\end{aligned}
$$

By adding these two equations we obtain

$$
\cos (n+2) \theta+\cos n \theta=2 \cos \theta \cos (n+1) \theta
$$

So we obtain

$$
\cos (n+2) \theta=2 \cos \theta \cos (n+1) \theta-\cos n \theta
$$

and hence the following formula.

$$
T_{n+2}(x)=2 T_{1}(x) T_{n+1}(x)-T_{n}(x)
$$

Since $T_{1}(x)=x$, we obtain the following recurrence formula.

$$
T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x)
$$

An example We calculate $T_{2}(x)$ by applying the above recurrence formula to $T_{1}(x)=x$ and $T_{0}(x)=1$.

$$
\begin{aligned}
T_{2}(x) & =2 x T_{1}(x)-T_{0}(x) \\
& =2 x^{2}-1
\end{aligned}
$$

This coincides with the result obtained from $\cos 2 \theta$.

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1
\end{aligned}
$$

