Forcing absoluteness and regularity properties

Daisuke Ikegami (Universiteit van Amsterdam)

May 27th, 2009
Work in ZFC

Models $= \text{transitive models of ZFC}$

V: the class of all sets
Forcing absoluteness

Definition

M: a model, $\mathbb{P} \in M$: a partial order, Γ: a set of statements

M is Γ-\mathbb{P}-absolute if

\[\forall \phi \in \Gamma, \forall G: \text{a } \mathbb{P}\text{-generic filter over } M, \]

\[M \models \phi \iff M[G] \models \phi. \]

- In this talk, Γ will be Σ^1_n for some $n \geq 1$.
- For Σ^1_n statements, we allow reals in M as parameters.
Remark

- V is Σ^1_2-\mathbb{P}-absolute for any \mathbb{P}.
- L is not Σ^1_3-\mathbb{P}-absolute if \mathbb{P} adds a new real.
- MA_{\aleph_1} implies that “V is Σ^1_3-\mathbb{P}-absolute for any ccc \mathbb{P}”.
Examples: the Baire property, Lebesgue measurability

Remark

- Every Σ^1_1-set of reals has the Baire property and is Lebesgue measurable.
- In L, there is a Δ^1_2-set of reals without the Baire property and which is not Lebesgue measurable.
- MA_{\aleph_1} implies that “Every Δ^1_2-set of reals has the Baire property and is Lebesgue measurable”.
Connection between forcing absoluteness and regularity properties

Theorem (Bagaria, Judah-Shelah, Woodin)

\[C: \] Cohen forcing, the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-absolute,
2. every \(\Delta^1_2 \)-set of reals has the Baire property,
3. for any real \(a \), there is a Cohen real over \(L[a] \).
Connection between forcing absoluteness and regularity properties

Theorem (Bagaria, Judah-Shelah, Woodin)

\(\mathcal{C} \): Cohen forcing, the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-absolutely Cohen,
2. every \(\Delta^1_2 \)-set of reals has the Baire property,
3. for any real \(a \), there is a Cohen real over \(L[a] \).

Theorem (Bagaria, Judah-Shelah, Woodin)

\(\mathcal{B} \): random forcing, the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-absolutely random,
2. every \(\Delta^1_2 \)-set of reals is Lebesgue measurable,
3. for any real \(a \), there is a random real over \(L[a] \).
Connection between forcing absoluteness and regularity properties 2

Theorem (Brendle-Löwe, I.)

\mathcal{S}: Sacks forcing, the following are equivalent:

1. V is Σ^1_3-\mathcal{S}-absolute,
2. there is no Δ^1_2 Bernstein set, and
3. for any real a, there is a real x which is not in $L[a]$.

Remark

We **cannot** replace 3. by the following:
For any real a, there is a Sacks real s over $L[a]$.
More examples

The same kind of statement holds for

- Mathias forcing and Ramsey property,
- Hechler forcing and the Baire property for Dominating topology.
Goal: introduce regularity properties for a wide class of forcings and prove the same kind of results in a uniform way.
Generalization

Goal: introduce regularity properties for a wide class of forcings and prove the same kind of results in a uniform way.

Theorem (1.)

\mathbb{P}: proper, strongly arboreal

Then the following are equivalent:

1. V is Σ^1_3-\mathbb{P}-absolute,
2. every Δ^1_2-set of reals is \mathbb{P}-measurable.
Theorem (1.)

\mathbb{P}: proper, strongly arboreal, provably Δ^1_2. Assume

$$\{c \mid c : \text{a Borel code}, B_c \in l_{\mathbb{P}^*}\} \in \Sigma^1_2. \ (\ast)$$

Then the following are equivalent:

1. V is Σ^1_3-\mathbb{P}-absolute,
2. every Δ^1_2-set of reals is \mathbb{P}-measurable,
3. for any real a and any $T \in \mathbb{P}$, there is a quasi-\mathbb{P}-generic real x in $[T]$ over $L[a]$.
Definable forcings and strongly proper forcings

Definition

\(\mathbb{P} \): a partial order, \(n \geq 1 \)

1. \(\mathbb{P} \) is *provably \(\Delta^1_n \)* if there are \(\Sigma^1_n \)-formula and \(\Pi^1_n \)-formula such that ZFC proves that they both define the triple \((\mathbb{P}, \leq_\mathbb{P}, \perp_\mathbb{P})\).

2. \(\mathbb{P} \) is *proper* if for any countable elementary submodel \(M \) of \(\mathcal{H}_\theta \) for enough large \(\theta \) with \(\mathbb{P} \in M \) and for any \(p \in \mathbb{P} \cap M \), there is a \(q \leq p \) s.t. \(q \) is \((M, \mathbb{P})\)-generic (i.e. for any maximal antichain \(A \) of \(\mathbb{P} \) in \(M \), \(A \) is predense below \(q \)).
Definable forcings and strongly proper forcings

Definition

\(\mathbb{P} \): a partial order, \(n \geq 1 \)

1. \(\mathbb{P} \) is provably \(\Delta^1_n \) if there are \(\Sigma^1_n \)-formula and \(\Pi^1_n \)-formula such that ZFC proves that they both define the triple \((\mathbb{P}, \leq, \bot_\mathbb{P}) \).

2. \(\mathbb{P} \) is strongly proper if for any countable transitive model \(M \) with \((\mathbb{P}^M, \leq^M, \bot^M) \subseteq (\mathbb{P}, \leq, \bot) \) and for any \(p \in \mathbb{P}^M \), there is a \(q \leq p \) s.t. \(q \) is \((M, \mathbb{P}) \)-generic (i.e. for any maximal antichain \(A \) of \(\mathbb{P}^M \) in \(M \), \(A \) is predense below \(q \)).
Definable forceings and strongly proper forceings

Definition

\(\mathcal{P}\): a partial order, \(n \geq 1\)

1. \(\mathcal{P}\) is *provably \(\Delta^1_n\)* if there are \(\Sigma^1_n\)-formula and \(\Pi^1_n\)-formula such that ZFC proves that they both define the pair \((\leq_{\mathcal{P}}, \perp_{\mathcal{P}})\).

2. \(\mathcal{P}\) is *strongly proper* if for any countable transitive model \(M\) with \((\mathcal{P}^M, \leq^M, \perp^M) \subseteq (\mathcal{P}, \leq, \perp)\) and for any \(p \in \mathcal{P}^M\), there is a \(q \leq p\) s.t. \(q\) is \((M, \mathcal{P})\)-generic (i.e. for any maximal antichain \(A\) of \(\mathcal{P}^M\) in \(M\), \(A\) is predense below \(q\)).

Remark

- Every provably \(\Delta^1_n\), strongly proper forcing is proper for each \(n\).
- Almost all known tree type forcings related to the reals are provably \(\Delta^1_2\) and strongly proper.
Arboreal forcings

Definition

\[\mathbb{P}: \text{a partial order} \]

1. \(\mathbb{P} \) is *arboreal* if
 - conditions of \(\mathbb{P} \) are perfect trees on \(\omega \) (resp. on \(\{0, 1\} \)),
 - conditions are ordered by inclusion.

2. \(\mathbb{P} \) is *strongly arboreal* if
 - \(\mathbb{P} \) is arboreal,
 - for any \(T \in \mathbb{P} \) and \(t \in T \), \(T_t \) is in \(\mathbb{P} \),
 where \(T_t = \{ s \in T \mid \text{either } s \subseteq t \text{ or } t \subseteq s \} \).
Coding generic filters by reals

Remark

\(\mathbb{P} \): strongly arboreal, \(G \): \(\mathbb{P} \)-generic over \(V \). Put

\[
x_G = \bigcup \{ \text{stem}(T) \mid T \in G \}.
\]

Then \(x_G \) is an element of \(\omega^\omega \) (or of \(\{0,1\}^\omega \)) and \(V[x_G] = V[G] \). The real \(x_G \) is called a \(\mathbb{P} \)-generic real over \(V \).
Examples of strongly arboreal forcings

1. Cohen forcing (\mathbb{C}): for any s in $\mathbb{C} = \omega^{<\omega}$, we assign

$$T_s = \{ t \in \omega^{<\omega} \mid t \supseteq s \}.$$

2. Random forcing (\mathbb{B}): conditions can be seen as perfect trees on $\{0, 1\}$ with positive Lebesgue measure.

3. Sacks forcing, Silver forcing, Mathias forcing, Hechler forcing, Laver forcing, Miller forcing etc.
Regularity properties for strongly arboreal forcings

Definition (\mathbb{P}-null sets, $I_\mathbb{P}$ and $I_\mathbb{P}^*$)

\mathbb{P}: strongly arboreal, A: a set of reals A is \mathbb{P}-null if

$$(\forall T \in \mathbb{P}) \ (\exists T' \leq T) \ [T'] \cap A = \emptyset.$$

Let $I_\mathbb{P}$ be the σ-ideal generated by \mathbb{P}-null sets. A is in $I_\mathbb{P}^*$ if $(\forall T \in \mathbb{P}) \ (\exists T' \leq T)$ such that $[T'] \cap A \in I_\mathbb{P}$.

Example

1. Cohen forcing
 - \mathbb{C}-null sets are nowhere dense sets.
 - $I_\mathbb{C} = I_\mathbb{C}^*$ is the meager ideal.

2. Random forcing
 - \mathbb{B}-null sets are Lebesgue null sets.
 - $I_\mathbb{B} = I_\mathbb{B}^*$ is the Lebesgue null ideal.
\(I_P \) vs \(I_P^* \)

Question

Let \(P \) be strongly arboreal, proper. Then \(I_P = I_P^* \)?

Remark

1. \(I_P \subseteq I_P^* \).
2. \(I_P = I_P^* \) if \(P \) is ccc or \(P \) admits a standard fusion argument.
Connection with “Forcing idealized”

Proposition

Let \mathbb{P} be proper, strongly arboreal and define $i : \mathbb{P} \to \mathcal{B}/\mathbb{P}^*$ as follows:

\[i(T) = \text{the equivalence class of } [T], \]

where \mathcal{B} is the set of all Borel sets. Then i is well-defined and dense.
Regularity properties for strongly arboreal forcings 2

Definition
\(\mathbb{P} \): strongly arboreal, \(A \): a set of reals.

\(A \) is **\(\mathbb{P} \)-measurable** if

\[
(\forall T \in \mathbb{P}) \ (\exists T' \leq T) \text{ either } [T'] \cap A \in I_\mathbb{P} \text{ or } [T'] \setminus A \in I_\mathbb{P}.
\]

Example

1. Cohen forcing: \(\mathbb{C} \)-measurability coincides with the Baire property.
2. Random forcing: \(\mathbb{B} \)-measurability coincides with Lebesgue measurability.
Regularity properties for strongly arboreal forcings 3

Definition

\(\mathbb{P} \): strongly arboreal, \(A \): a set of reals.

\(A \) is \(\mathbb{P} \)-measurable if

\[
(\forall T \in \mathbb{P}) \ (\exists T' \leq T) \text{ either } [T'] \cap A \in l_\mathbb{P} \text{ or } [T'] \setminus A \in l_\mathbb{P}.
\]

Example

3 Sacks forcing: \(\mathcal{S} \)-measurability corresponds to not being a Bernstein set in the following sense:

If \(n \geq 1 \), \(\Gamma = \Sigma^1_n \) or \(\Pi^1_n \) or \(\Delta^1_n \), then the following are equivalent:

- every set in \(\Gamma \) is \(\mathcal{S} \)-measurable, and
- no sets in \(\Gamma \) are Bernstein.
Quasi-P-generic reals

Definition

P: strongly arboreal, M: a model, x: a real.

x is *quasi-P-generic over* M if for any Borel code c in M, if B_c is in l_P^*, then $x \notin B_c$.

Example

1. Cohen forcing: quasi-\mathcal{C}-generic reals over M are the same as Cohen reals over M.

2. random forcing: quasi-\mathcal{B}-generic reals over M are the same as random reals over M.

3. Sacks forcing: x is quasi-\mathcal{S}-generic over M iff x is not in M.
Quasi-generics vs generics

Remark

- \mathbb{P}-genericity implies quasi-\mathbb{P}-genericity if \mathbb{P} is strongly proper, strongly arboreal and provably Δ^1_2.
- Quasi-\mathbb{P}-genericity implies \mathbb{P}-genericity if \mathbb{P} is additionally provably ccc.
Go back to Theorems...

Theorem (1.)

\[\mathbb{P} : \text{proper, strongly arboreal.} \] Then the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-\(\mathbb{P} \)-absolute,
2. every \(\Delta^1_2 \)-set of reals is \(\mathbb{P} \)-measurable.

Theorem (1.)

\[\mathbb{P} : \text{proper, strongly arboreal, provably } \Delta^1_2. \] Assume

\[\{ c \mid c: \text{a Borel code, } B_c \in I_{\mathbb{P}^*} \} \in \Sigma^1_2. \] \((*)\)

Then the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-\(\mathbb{P} \)-absolute,
2. every \(\Delta^1_2 \)-set of reals is \(\mathbb{P} \)-measurable,
3. for any real \(a \) and any \(T \in \mathbb{P} \), there is a quasi-\(\mathbb{P} \)-generic real \(x \) in \([T]\) over \(L[a] \).
On (*)

Question

If \mathbb{P} is strongly proper, strongly arboreal and provably Δ^1_2, then does the assumption (*) hold in the second theorem?

Remark

1. The set $\{c \mid c : \text{a Borel code, } B_c \in \mathbb{P}^*\}$ is Π^1_2 under the above assumptions for \mathbb{P}.
2. The condition (*) is true if \mathbb{P} is provably ccc and Σ^1_1.

Conjecture (Zapletal)

For Mathias forcing, the condition (*) fails.

Remark

But the set of quasi-Mathias-generic reals over L is Π^1_2!!
Some words for the proofs

Theorem (1.)

\(\mathbb{P} \): proper, strongly arboreal. Then the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-\(\mathbb{P} \)-absolute,
2. every \(\Delta^1_2 \)-set of reals is \(\mathbb{P} \)-measurable.

Proof.

From (1) to (2):

- For a \(\Delta^1_2 \)-set \(A \) of reals, use Shoenfield trees and (1) to get the absolute tree representation of \(A \) between \(V \) and \(V^\mathbb{P} \).
- Use the fact that

\[\{ x \mid x \text{ is a } \mathbb{P} \text{-generic real over } M \text{ for some suitable } M \} \]

is of measure one w.r.t. \(I^*_{\mathbb{P}} \).
Some words for the proofs

Theorem (1.)

\mathbb{P}: proper, strongly arboreal. Then the following are equivalent:

1. V is Σ^1_3-\mathbb{P}-absolute,
2. every Δ^1_2-set of reals is \mathbb{P}-measurable.

Proof.

From (2) to (1): Use the following to approximate (in V) the behavior of a witness (a \mathbb{P}-name for a real) of a Σ^1_3 fact in $V^\mathbb{P}$:

1. Σ^1_2-uniformization,
2. (2),
3. every \mathbb{P}-name for a real can be computed by a generic real in a Borel way (in V) (by properness).
Some words for the proofs 2

Theorem (1.)

\[P: \text{strongly proper, strongly arboreal, provably } \Delta^1_2. \text{ Assume} \]

\[\{ c \mid c: \text{a Borel code, } B_c \in l_{P^*} \} \in \Sigma^1_2. \tag{*} \]

Then the following are equivalent:

1. \(V \) is \(\Sigma^1_3 \)-\(P \)-absolute,
2. every \(\Delta^1_2 \)-set of reals is \(P \)-measurable,
3. for any real \(a \) and any \(T \in P \), there is a quasi-\(P \)-generic real \(x \) in \([T] \) over \(L[a] \).

Proof.

From (2) to (1): the same as before.
From (1) to (3): Use (\(\ast \)) to show that “There is a quasi-\(P \)-generic real \(x \) in \([T] \) over \(L[a] \)” is a \(\Sigma^1_3 \) statement.
Some words for the proofs 2

Proof.

From (3) to (2):

1. Case 1: $\omega_1^V > \omega_1^{L[a]}$ for any real a.
 - Capture a given Δ^1_2-set of reals in $L[a]$ for some real a by using Shoenfield trees.
 - Use the fact that
 \[
 \{ x \mid x \text{ is a } P^{L[a]}\text{-generic real over } L[a] \}
 \]
 is of measure one w.r.t. I_P^*.

2. Case 2: $\omega_1^V = \omega_1^{L[a]}$ for some real a.
 Get the absolute decomposition of Σ^1_2-sets into Borel sets between $L[a]$ and V by using the absoluteness of Shoenfield trees between them, and use (3).
In ZFC, the equivalence fails in general (i.e. Σ^1_4-forcing absoluteness does not imply Δ^1_3-regularity property and vice versa). We need a natural additional assumption.
\[\Sigma^1_4 \text{-} \text{forcing absoluteness and } \Delta^1_3 \text{-regularity properties} \]

Theorem

\(P \): proper, strongly arboreal

Assume every set has a sharp. Then either \(\Delta^1_2 \)-determinacy holds or the following are equivalent:

1. \(V \) is \(\Sigma^1_4 \)-\(P \)-absolute,
2. every \(\Delta^1_3 \)-set of reals is \(P \)-measurable.
\(\Sigma^1_4 \)-forcing absoluteness and \(\Delta^1_3 \)-regularity properties

Theorem

\(\mathbb{P} \): proper, strongly arboreal

Assume every set has a sharp. Then either \(\Delta^1_2 \)-determinacy holds or the following are equivalent:

1. \(V \) is \(\Sigma^1_4 \)-\(\mathbb{P} \)-absolute,
2. every \(\Delta^1_3 \)-set of reals is \(\mathbb{P} \)-measurable.

Question

Does \(\Delta^1_2 \)-determinacy imply that \(V \) is \(\Sigma^1_4 \)-\(\mathbb{P} \)-absolute for any proper, strongly arboreal \(\mathbb{P} \)?

Remark

1. If every set has a sharp, (1) implies (2).
2. The answer of the question is ‘Yes’ if \(\mathbb{P} \) is ccc.
Theorem (1.)

\(\mathbb{P} \): strongly proper, strongly arboreal, provably \(\Delta^1_2 \).
Assume every set has a sharp.
Then either \(\Delta^1_2 \)-determinacy holds or the following are equivalent:

1. \(\mathbb{V} \) is \(\Sigma^1_4 \)-\(\mathbb{P} \)-absolute,
2. every \(\Delta^1_3 \)-set of reals is \(\mathbb{P} \)-measurable,
3. for any real \(a \) and any \(T \in \mathbb{P} \), there is a quasi-\(\mathbb{P} \)-generic real \(x \) in \([T] \) over \(K_a \), where

\[
K_a = \begin{cases}
 \text{the Mitchell-Steel core model} & \text{if } a^+ \text{ exists,} \\
 \text{the Dodd-Jensen core model} & \text{otherwise.}
\end{cases}
\]
Comparison between previous case and present case

<table>
<thead>
<tr>
<th>Previous</th>
<th>Present 1</th>
<th>Present 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>K</td>
<td>Δ^1_2-determinacy</td>
</tr>
<tr>
<td>Σ^1_2-correctness</td>
<td>Σ^1_3-correctness</td>
<td>irrelevant</td>
</tr>
<tr>
<td>Shoenfield trees (ω_1)</td>
<td>Martin-Solovay trees (ν_2)</td>
<td>irrelevant</td>
</tr>
<tr>
<td>Σ^1_2-uniformization</td>
<td>Σ^1_3-uniformization</td>
<td>Π^1_3-uniformization</td>
</tr>
</tbody>
</table>
Comparison between previous case and present case

<table>
<thead>
<tr>
<th>Previous</th>
<th>Present 1</th>
<th>Present 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>K</td>
<td>Δ^1_2-determinacy</td>
</tr>
<tr>
<td>Σ^1_2-correctness</td>
<td>Σ^1_3-correctness</td>
<td>irrelevant</td>
</tr>
<tr>
<td>Shoenfield trees (ω_1)</td>
<td>Martin-Solovay trees (u_2)</td>
<td>irrelevant</td>
</tr>
<tr>
<td>Σ^1_2-uniformization</td>
<td>Σ^1_3-uniformization</td>
<td>Π^1_3-uniformization</td>
</tr>
</tbody>
</table>

Question (Sharps for sets vs sharps for reals)

Assume every real has a sharp and let \mathbb{P} be proper and provably Δ^1_2. Then does every real have a sharp in $V^{\mathbb{P}}$ and $u^V_2 = u^{V^{\mathbb{P}}}_2$?
Thank you!