Boolean-valued 2nd-order logic

Daisuke Ikegami
University of California, Berkeley

Joint work with Jouko Väänänen
Second order logic; background

Two semantics:

1. Full semantics: Highly complex (very powerful), does not enjoy completeness, \(\omega\)-compactness.

2. Henkin semantics: Very simple (very weak), enjoys completeness, \(\omega\)-compactness.
Second order logic; background

Two semantics:

1. Full semantics: Highly complex (very powerful), does not enjoy completeness, ω-compactness.

2. Henkin semantics: Very simple (very week), enjoys completeness, ω-compactness.

Boolean valued second order logic is a powerful logic sitting between the two semantics and might enjoy completeness.
2nd-order logic; Henkin models

\[
\begin{align*}
\text{Henkin models} & \quad \text{Models of ZFC} \\
\text{2nd-order logic} & \quad \text{Set theory}
\end{align*}
\]

Definition

A 2nd-order structure \(M = (X, G, \ldots) \) is a **Henkin model** if it satisfies Comprehension Axiom for each 2nd-order formula.
2nd-order logic; Henkin models

\[
\text{Henkin models} \quad \frac{\text{2nd-order logic}}{=} \quad \frac{\text{Models of ZFC}}{\text{Set theory}}
\]

Definition

A 2nd-order structure \(M = (X, G, \ldots) \) is a **Henkin model** if it satisfies Comprehension Axiom for each 2nd-order formula.

Example

A 2nd-order structure \(M = (X, \mathcal{P}(X), \ldots) \) is called a **full 2nd-order structure**.
2nd-order logic; Henkin models

\[\frac{\text{Henkin models}}{2\text{-order logic}} = \frac{\text{Models of ZFC}}{\text{Set theory}} \]

Definition

A 2nd-order structure \(M = (X, G, \ldots) \) is a **Henkin model** if it satisfies Comprehension Axiom for each 2nd-order formula.

Example

A 2nd-order structure \(M = (X, \mathcal{P}(X), \ldots) \) is called a **full 2nd-order structure**.

Theorem (Henkin)

The semantics for 2nd-order logic given by Henkin models is sound and complete to a standard proof system in 2nd-order logic.
Corollary

The validity of 2nd-order logic via Henkin semantics is Σ^0_1.

Henkin semantics gives us a 2nd-order logic similar to 1st-order logic.
Corollary
The validity of 2nd-order logic via Henkin semantics is Σ^0_1.

Henkin semantics gives us a 2nd-order logic similar to 1st-order logic.

Full semantics = semantics with full 2nd-order structures

Theorem (Väänänen)
The validity of 2nd-order logic via full semantics is Π_2-complete in ZFC.

Point: One can express the structures of the form (V_α, \in) via full 2nd-order structures.
Definition

Let \mathcal{L} be a relational language. A **Boolean valued \mathcal{L}-structure** is a tuple $M = (A, \mathbb{B}, \{ R_i^M \})$ where

1. A is a nonempty set,
2. \mathbb{B} is a complete Boolean algebra, and
3. for each n-ary relational symbol R_i in \mathcal{L}, $R_i^M : A^n \to \mathbb{B}$.
Boolean valued 2nd-order logic; Boolean valued structures

Definition

Let \mathcal{L} be a relational language. A **Boolean valued \mathcal{L}-structure** is a tuple $M = (A, \mathbb{B}, \{ R^M_i \})$ where

1. A is a nonempty set,
2. \mathbb{B} is a complete Boolean algebra, and
3. for each n-ary relational symbol R_i in \mathcal{L}, $R^M_i : A^n \to \mathbb{B}$.

Example

If $\mathbb{B} = \{0, 1\}$, each R^M_i is a relation in 1st-order logic and M is the same as 1st-order structure.
Truth of 2nd-order formulas in Boolean valued structures

Basic idea: “subsets” are functions from A to \mathbb{B}.

Definition

Let $M = (A, \mathbb{B}, \{R_i\})$ be a Boolean valued \mathcal{L}-structure. Then we assign $\|\phi[^{\vec{a}, \vec{f}}]\|_M^M \in \mathbb{B}$ to each 2nd-order formula ϕ, $\vec{a} \in <\omega A$, and $\vec{f} \in <\omega (A\mathbb{B})$ as follows:

1. ϕ is $R_i(^{\vec{x}})$. Then $\|R_i(^{\vec{x}})[^{\vec{a}}]\|_M^M = R_i^M(^{\vec{a}})$.
2. ϕ is $X(x)$. Then $\|X(x)[^{a, \vec{f}}]\|_M^M = f(a)$.
3. Boolean combinations are as usual.
4. ϕ is $\exists x \psi$. Then $\|\exists x \psi[^{\vec{a}, \vec{f}}]\|_M^M = \bigvee_{b \in A} \|\psi[^{b, \vec{a}, \vec{f}}]\|_M^M$.
5. ϕ is $\exists X \psi$. Then $\|\exists X \psi[^{\vec{a}, \vec{f}}]\|_M^M = \bigvee_{g: A \rightarrow \mathbb{B}} \|\psi[^{\vec{a}, g, \vec{f}}]\|_M^M$.
Boolean-valued 2nd-order logic; Boolean-valued structures ctd.

Boolean-valued structures = full 2nd-order structures in forcing extensions.
Boolean-valued 2nd-order logic; Boolean-valued structures ctd.

Boolean-valued structures = full 2nd-order structures in forcing extensions.

Remark

Given a Boolean-valued structure $\mathcal{M} = (A, \mathcal{B}, \{R^M_i\})$ and a \mathcal{B}-generic filter G over V, the structure \mathcal{M} corresponds to a full 2nd-order structure $\mathcal{M}[G] = (A, \mathcal{P}(X)^{V[G]}, \{R^M_i[G]\})$ in $V[G]$, where

$$R^M_i[G] = \{ x \in X, | R^M_i(x) \in G \}.$$
Boolean-valued 2nd-order logic; Boolean-valued structures ctd.

Boolean-valued structures = full 2nd-order structures in forcing extensions.

Remark

Given a Boolean-valued structure $M = (A, \mathbb{B}, \{R_i^M\})$ and a \mathbb{B}-generic filter G over V, the structure M corresponds to a full 2nd-order structure $M[G] = (A, \mathcal{P}(X)^{V[G]}, \{R_i^{M[G]}\})$ in $V[G]$, where

$$R_i^{M[G]} = \{x \in X, | R_i^M(x) \in G\}.$$

For any 2nd-order sentence ϕ, $||\phi||^M = 1$ iff $M[G] \models \phi$ for any \mathbb{B}-generic filter G over V.
Boolean valued 2nd-order logic; Boolean-validity

Definition

Let \mathcal{L} be relational. A 2nd-order \mathcal{L}-sentence ϕ is **Boolean-valid** if $\|\phi\|^M = 1$ for any Boolean valued \mathcal{L}-structure M.

Our interest: $0^{2^b} = \{ \phi \mid \phi \text{ is Boolean-valid} \}$.
Boolean valued 2nd-order logic; Boolean-validity

Definition

Let \mathcal{L} be relational. A 2nd-order \mathcal{L}-sentence ϕ is **Boolean-valid** if $\|\phi\|^M = 1$ for any Boolean valued \mathcal{L}-structure M.

Our interest: $0^{2b} = \{\phi \mid \phi \text{ is Boolean-valid}\}$.

Lemma

Let ϕ be a 2nd-order sentence. Then ϕ is Boolean-valid iff for any set forcing \mathbb{P} and any \mathbb{P}-generic filter G over V, ϕ is valid via full semantics in $V[G]$.
Result 1; Validity

Theorem
If Ω-conjecture is true and there is a proper class of Woodin cardinals, then 0^{2^b} is Δ_2 in set theory.

Remark
The validity of full second order logic is Π_2-complete in ZFC.
Ω-logic; Ω-validity

Ω-logic: a logic of forcing absoluteness

Definition (Ω-validity)

Let ϕ be a Π_2-sentence in set theory. Then ϕ is Ω-valid if ϕ is true in any set forcing extension.

Main interest: $0^\Omega = \{\phi \mid \phi$ is Ω-valid\}.
Definition

A set of reals A is **universally Baire** if for any continuous function f from a compact Hausdorff space X to the reals, $f^{-1}(A)$ has the property of Baire in X.
Ω-logic; Universally Baire sets

Definition

A set of reals A is **universally Baire** if for any continuous function f from a compact Hausdorff space X to the reals, $f^{-1}(A)$ has the property of Baire in X.

Remark

A set of reals A is universally Baire if and only if for any partial order \mathbb{P}, there are trees T, U on $\omega \times Y$ for some Y such that

\[A = p[T] \text{ and } \Vdash_{\mathbb{P}} \text{“} p[\tilde{T}] = \mathbb{R} \setminus p[\tilde{U}] \text{”}. \]
Definition

A set of reals A is **universally Baire** if for any continuous function f from a compact Hausdorff space X to the reals, $f^{-1}(A)$ has the property of Baire in X.

Remark

A set of reals A is universally Baire if and only if for any partial order \mathbb{P}, there are trees T, U on $\omega \times Y$ for some Y such that

$$A = p[T] \text{ and } \models_{\mathbb{P}} "p[\bar{T}] = \mathbb{R} \setminus p[\bar{U}]".$$

Example

1. The collection of all uB sets is closed under complements and countable unions, hence every Borel set is universally Baire.
Ω-logic; Universally Baire sets

Definition
A set of reals A is **universally Baire** if for any continuous function f from a compact Hausdorff space X to the reals, $f^{-1}(A)$ has the property of Baire in X.

Remark
A set of reals A is universally Baire if and only if for any partial order \mathbb{P}, there are trees T, U on $\omega \times Y$ for some Y such that

$$A = p[T] \text{ and } \Vdash_{\mathbb{P}} "p[\check{T}] = \mathbb{R} \setminus p[\check{U}]".$$

Example
1. The collection of all uB sets is closed under complements and countable unions, hence every Borel set is universally Baire.
2. Every \mathcal{P}_{1}^1-set of reals is universally Baire.
Ω-logic; Universally Baire sets ctd.

Example

The following are equivalent:

1. every \(\Pi^1_2 \)-set of reals is universally Baire,
2. every set has a sharp.
Example

1. The following are equivalent:
 1. every Π^1_2-set of reals is universally Baire,
 2. every set has a sharp.

2. The following are equivalent:
 1. every set of reals in $L(\mathbb{R})$ is universally Baire,
 2. for any set X, $M^\#_\omega(X)$ exists.

\(\Omega\)-logic; Universally Baire sets ctd.
Ω-logic; Closure under universally Baire sets

Definition (A-closure)

Let A be universally Baire. A countable ω-model M of ZFC is A-closed if for any M-generic filter G on a partial order in M,

$$M[G] \cap A \in M[G].$$
Ω-logic; Closure under universally Baire sets

Definition (A-closure)

Let A be universally Baire. A countable ω-model M of ZFC is *A-closed* if for any M-generic filter G on a partial order in M,

$$M[G] \cap A \in M[G].$$

Example

- For a countable ω-model M of ZFC, the following are equivalent:
 - M is A-closed for any Π^1_1-set A, and
 - M is well-founded.
Definition (A-closure)

Let A be universally Baire. A countable ω-model M of ZFC is A-closed if for any M-generic filter G on a partial order in M,

$$M[G] \cap A \in M[G].$$

Example

1. For a countable ω-model M of ZFC, the following are equivalent:
 - M is A-closed for any Π_1^1-set A, and
 - M is well-founded.

2. For a countable ω-model M of ZFC, the following are equivalent:
 1. M is A-closed for every Π_2^1-set A, and
 2. M is closed under sharps.
\(\Omega\)-logic; \(\Omega\)-provability

Definition

Let \(\phi\) be a \(\Pi_2\)-sentence in set theory. Then \(\phi\) is \(\Omega\)-provable if there is a universally Baire set \(A\) such that

\[
(\forall M \text{ c.t.m. of ZFC}) \text{ if } M \text{ is } A\text{-closed, then } M \models \phi.
\]
Definition

Let ϕ be a Π^1_2-sentence in set theory. Then ϕ is Ω-provable if there is a universally Baire set A such that

$$(\forall M \text{ c.t.m. of ZFC}) \text{ if } M \text{ is } A\text{-closed, then } M \models \phi.$$

Example

If every set has a sharp, any Π^1_3-sentence true in V is Ω-provable.
Theorem (Soundness (Woodin))

Let ϕ be a Π_2-sentence. Then ϕ is Ω-provable, then it is Ω-valid.
Theorem (Soundness (Woodin))

Let ϕ be a Π_2-sentence. Then ϕ is Ω-provable, then it is Ω-valid.

Conjecture (\(\Omega\)-conjecture (Woodin))

Suppose there is a proper class of Woodin cardinals and let ϕ be a Π_2-sentence. Then ϕ is Ω-provable iff ϕ is Ω-valid.
Theorem (Soundness (Woodin))

Let \(\phi \) be a \(\Pi_2 \)-sentence. Then \(\phi \) is \(\Omega \)-provable, then it is \(\Omega \)-valid.

Conjecture (\(\Omega \)-conjecture (Woodin))

Suppose there is a proper class of Woodin cardinals and let \(\phi \) be a \(\Pi_2 \)-sentence. Then \(\phi \) is \(\Omega \)-provable iff \(\phi \) is \(\Omega \)-valid.

Theorem (Woodin)

\(\text{ZFC} + \Omega \)-conjecture + “There is a proper class of Woodin cardinals” is consistent.
Result 1; Validity

Theorem
If \(\Omega \)-conjecture is true and there is a proper class of Woodin cardinals, then \(0^{2^b} \) is \(\Delta_2 \) in set theory.
Result 1; Validity

Theorem
If Ω-conjecture is true and there is a proper class of Woodin cardinals, then 0^{2^b} is Δ_2 in set theory.

Theorem
$$0^\Omega \equiv_T 0^{2^b}.$$

Theorem (Woodin)
Assuming Ω-conjecture and a proper class of Woodins, one can show that 0^Ω is Δ_2 in Set Theory.
Result 1; Validity ctd.

Theorem

\[0^\Omega \equiv_T 0^{2^b}. \]

Key point:

Lemma

Let \(\phi \) be a 2nd-order sentence. Then \(\phi \) is Boolean-valid iff for any set forcing \(\mathbb{P} \) and any \(\mathbb{P} \)-generic filter \(G \) over \(V \), \(\phi \) is valid via full semantics in \(V[G] \).
Result 2; Compactness numbers

Definition

k is *strongly compact* if k is $L^1_{k,k}$-compact.
Result 2; Compactness numbers

Definition

\(\kappa \) is *strongly compact* if \(\kappa \) is \(\mathbb{L}^{1}_{\kappa, \kappa} \)-compact.

Theorem (Magidor)

The following are equivalent:

1. \(\kappa \) is \(\mathbb{L}^{2}_{\kappa, \kappa} \)-compact,
2. \(\kappa \) is extendible.
Result 2; Compactness numbers

Definition

\(\kappa \) is *strongly compact* if \(\kappa \) is \(\mathbb{L}^1_{\kappa, \kappa} \)-compact.

Theorem (Magidor)

The following are equivalent:

1. \(\kappa \) is \(\mathbb{L}^2_{\kappa, \kappa} \)-compact,
2. \(\kappa \) is extendible.

Theorem

Suppose there is a proper class of Woodin cardinals, a supercompact cardinal \(\kappa \), and assume Strong \(\Omega \)-conjecture holds. Then \(\kappa \) is \(\mathbb{L}^2_{\kappa, \kappa} \)-compact.

Definition (Strong \(\Omega \)-conjecture)

Assume there is a proper class of Woodin cardinals. Then \(\Omega \)-conjecture with real parameters holds in any set generic extension.
Löwenheim-Skolem number

Definition

The **cardinality** of a structure M ($\text{card}(M)$) is that of its first order part.
Löwenheim-Skolem number

Definition

The **cardinality** of a structure M ($\text{card}(M)$) is that of its first order part.

Definition

Given a logic L, the **Löwenheim-Skolem number** of L ($\ell(L)$) is the least κ such that

$$(\forall \phi \in L) \ (\exists M) \ M \models \phi \iff (\exists M) \ M \models \phi \text{ and } \text{card}(M) \leq \kappa.$$
Löwenheim-Skolem number

Definition

The cardinality of a structure M (card(M)) is that of its first order part.

Definition

Given a logic L, the Löwenheim-Skolem number of L ($\ell(L)$) is the least κ such that

$$(\forall \phi \in L) \ (\exists M) \ M \vDash \phi \implies (\exists M) \ M \vDash \phi \text{ and card}(M) \leq \kappa.$$

Example

1. $\ell(\text{FOL}) = \aleph_0$
Löwenheim-Skolem number

Definition

The **cardinality** of a structure M (card(M)) is that of its first order part.

Definition

Given a logic L, the **Löwenheim-Skolem number** of L (Γ(L)) is the least κ such that

$$(\forall \phi \in L) \ (\exists M) \ M \models \phi \implies (\exists M) \ M \models \phi \text{ and card}(M) \leq \kappa.$$

Example

1. ℓ (FOL) = \aleph_0
2. ℓ (full SOL) = sup{$\alpha \mid \alpha$ is Δ_2-definable}. So

 (The first Woodin limit of Woodins) < ℓ (full SOL) ≤ (The first Σ_2 reflecting card).
Result 3; Löwenheim-Skolem number

Example

1. ℓ (FOL) = κ_0

2. ℓ (full SOL) = $\sup\{\alpha | \alpha$ is Δ_2-definable}. So

 (The first Woodin limit of Woodins) < ℓ (full SOL)

 \leq (The first Σ_2 reflecting card).
Result 3; Löwenheim-Skolem number

Example

1. ℓ (FOL) = \aleph_0
2. ℓ (full SOL) = $\sup\{\alpha \mid \alpha \text{ is } \Delta_2\text{-definable}\}$. So

 (The first Woodin limit of Woodins) $< \ell$ (full SOL)

 \[\leq (\text{The first } \Sigma_2 \text{ reflecting card}).\]

Theorem

If ZFC + “There is a proper class of Woodin cardinals” is consistent, then so is ZFC + “There is a proper class of Woodin cardinals” + “ℓ (BVSOL) $< (\text{the first Woodin cardinal})$”
Result 4; Completeness

One can formulate the notion of provability in BVSOL (Boolean provability) in a similar way as Ω-provability.
Result 4; Completeness

One can formulate the notion of provability in BVSOL (Boolean provability) in a similar way as Ω-provability.

Theorem (Soundness)

If φ is Boolean provable, then it is Boolean valid.
Result 4; Completeness

One can formulate the notion of provability in BVSOL (Boolean provability) in a similar way as Ω-provability.

Theorem (Soundness)

If φ is Boolean provable, then it is Boolean valid.

Definition (Completeness)

Completeness of BVSOL states the following: Assume there is a proper class of Woodin cardinals. Then if φ is Boolean valid, then so is Boolean provable.
Result 4; Completeness

One can formulate the notion of provability in BVSOL (Boolean provability) in a similar way as Ω-provability.

Theorem (Soundness)

If ϕ is Boolean provable, then it is Boolean valid.

Definition (Completeness)

Completeness of BVSOL states the following: Assume there is a proper class of Woodin cardinals. Then if ϕ is Boolean valid, then so is Boolean provable.

Theorem

Completeness of BVSOL implies Ω-conjecture.

Note: The converse is not known to be true.
Inner models from logic

Definition

Given a logic \mathcal{L},

\[
\begin{align*}
L_0(\mathcal{L}) &= \emptyset, \\
L_{\alpha+1}(\mathcal{L}) &= \text{Def}_\mathcal{L}(L_\alpha(\mathcal{L})), \\
L_\gamma(\mathcal{L}) &= \bigcup_{\alpha<\gamma} L_\alpha(\mathcal{L}) \quad (\gamma \text{ is limit}), \\
L(\mathcal{L}) &= \bigcup_{\alpha \in \text{On}} L_\alpha(\mathcal{L}).
\end{align*}
\]
Inner models from logic

Definition

Given a logic \mathcal{L},

\[
\begin{align*}
L_0(\mathcal{L}) &= \emptyset, \\
L_{\alpha+1}(\mathcal{L}) &= \text{Def}_\mathcal{L}(L_\alpha(\mathcal{L})), \\
L_\gamma(\mathcal{L}) &= \bigcup_{\alpha<\gamma} L_\alpha(\mathcal{L}) \quad (\gamma \text{ is limit}), \\
L(\mathcal{L}) &= \bigcup_{\alpha \in \text{On}} L_\alpha(\mathcal{L}).
\end{align*}
\]

Example

- When \mathcal{L} is FOL, $L(\mathcal{L})$ is L.
- When \mathcal{L} is full SOL, $L(\mathcal{L})$ is HOD.
Example (Kennedy, Magidor, Väänänen)

Let \mathcal{L} be the countable cofinality logic. Then assuming a proper class of Woodins, the theory of \mathcal{L} is invariant under set forcing, \mathcal{L} contains 0^\dagger, and \mathcal{L} is not Σ^1_3-correct.

Question

How about $\mathcal{L} = \text{BVSOL}$?
$L(\mathcal{L})$ for BVSOL

Definition

For a set X and a second order formula ϕ,

$$A_{\phi, X} = \{x \in X \mid \phi[x] \text{ is Boolean valid with the first order universe } X\}.$$

$$\text{Def}_{\text{BVSOL}}(X) = \{A_{\phi, X} \mid \phi \text{ is a second order formula}\}.$$

Let $L^* = L(\text{BVSOL})$.
$L(\mathcal{L})$ for BVSOL, ctd.

Proposition (Schlicht, I.)

L^* can express the continuum function. Therefore, one can force $V = L^*$ with a class forcing.
\(L(\mathcal{L}) \) for BVSOL, ctd.

Proposition (Schlicht, I.)

\(L^* \) can express the continuum function. Therefore, one can force \(V = L^* \) with a class forcing.

Question

Can one force \(L^* \neq \text{HOD} \)?
Definition

For a set X and a second order formula ϕ, ϕ is **suitable to** X if for every element x of X, either $\phi[x]$ or $\neg\phi[x]$ is Boolean valid with the first order universe X.
$L(\mathcal{L})$ for BVSOL, ctd..

Definition

For a set X and a second order formula ϕ, $
\phi$ is **suitable to** X if for every element x of X, either $\phi[x]$ or $\neg \phi[x]$ is Boolean valid with the first order universe X.

Definition

$$\text{Def}_{\text{BVSOL}}^{ab}(X) = \{ A_{\phi, x} \mid \phi \text{ is suitable to } X \}.$$

Let $L_{ab}^* = L(\text{BVSOL})$ with Def^{ab}.
Proposition (Schlicht, I.)

$L^*_a b$ is Σ^1_ω-correct. In particular, projective determinacy is true in $L^*_a b$ assuming large cardinals.
L(\mathcal{L}) for BVSOL, ctd...

Proposition (Schlicht, I.)

L^*_{ab} is Σ^1_ω-correct. In particular, projective determinacy is true in L^*_{ab} assuming large cardinals.

Question

Could AD$^{L(\mathbb{R})}$ be true in L^*_{ab}?
$L(\mathcal{L})$ for BVSOL, ctd...

Proposition (Schlicht, I.)
L_{ab}^* is Σ^1_1-correct. In particular, projective determinacy is true in L_{ab}^* assuming large cardinals.

Question
Could $AD^{L(\mathbb{R})}$ be true in L_{ab}^*?

Question
Is L_{ab}^* absolute under set forcing? How about its theory?
$L(\mathcal{L})$ for BVSOL, ctd...

Proposition (Schlicht, I.)

$L^*_a_b$ is Σ^1_ω-correct. In particular, projective determinacy is true in $L^*_a_b$ assuming large cardinals.

Question

Could $AD^{L(\mathbb{R})}$ be true in $L^*_a_b$?

Question

Is $L^*_a_b$ absolute under set forcing? How about its theory?

Proposition (Schlicht, I.)

$(L^*_a_b)^{V^\mathbb{P}} \subseteq \text{HOD}^V$ for all set forcings \mathbb{P}.
Vielen Dank für Ihre Aufmerksamkeit!