Iterative-Free Program Analysis

Mizuhito Ogawatx Zhenjiang Hutx Isao Sasanot
mizuhito@jaist.ac.jp hu@mist.i.u-tokyo.ac.jp sasano@jaist.ac.jp

tJapan Advanced Institute of Science and Technology,
¥The University of Tokyo, and
xJapan Science and Technology Corporation, PRESTO

Abstract 1 Introduction

Program analysis is the heart of modern compilers. Most control Program analysis is the heart of modern compilers. Most control
flow analyses are reduced to the problem of finding a fixed point flow analyses are reduced to the problem of finding a fixed pointin a
in a certain transition system, and such fixed point is commonly certain transition system. Ordinary method to compute a fixed point
computed through aiterative procedure that repeats tracing until is an iterative procedure that repeats tracing until convergence.
convergence. Our starting observation is that most programs (withepaghetti

This paper proposes a new method to analyze programs threugh GOTO) have quite well-structured control flow graphs. This fact
cursive graph traversals instead of iterative procedures, based on is formally characterized in terms dfee width of a graph [25].

the fact that most programs (withospiaghetti GOTO) have well- Thorup showed that control flow graphs of GOTO-free C programs
structured control flow graphgraphs with bounded tree width. have tree width at most 6 [33], and recent empirical study shows
Our main techniques are; an algebraic construction of a control that control flow graphs of most Java programs have tree width at
flow graph, calledSP Term, which enables control flow analysis most 3 (though in general it can be arbitrary large) [16].

to be defined in a natural recursive form, and@ptimization The- ~ Once a graph has bounded tree width, we can construct a graph in
orem, which enables us to compute optimal solution by dynamic an algebraic way [3, 4]. This suggests that finding a fixed point
programming. would be computed by recursive traversals on the algebraic struc-

We illustrate our method with two examples; dead code detection ture, and the optimal solution would be obtained with a dynamic
and register allocation. Different from the traditional standard it- programming.

erative solution, our dead code detection is described as a simpleynfortunately, the existing results are not sufficient for our purpose.
combination of bottom-up and top-down traversals on SP Term. For instance, the algebraic construction of graphs with bounded tree
Register allocation is more interesting, as it further requires opti- width treats only undirected graphs [3]. This problem can be eas-
mality of the result. We show how the Optimization Theorem on ily coped with, but a more serious problem is that it has too many
SP Terms works to find an optimal register allocation as a certain recursive constructors(k + 1)(k + 2)/6 for tree widthk, which

dynamic programming. makes it hard to write recursive definitions over it.

This paper proposes a new algebraic constru@®mermof graphs
Categories and Subject Descriptors with bounded tree width, and a new method to analyze programs
D.1.1 [Applicative (Functional) Programming]: Functional Pro- throughrecursive graph traversals instead of iterative procedures,

gramming; D.1.2 Automatic Programming]: Program Genera- based on the fact that most programs (withspeghetti GOTO)
tion; D.3.3 [Language Constructs and Features|: Programming have well-structured control flow graphs.

with Graphs Our main theoretical result (Theorem 2) is that a (directed) géaph
can be represented by an SP Tern®i if and only if G has tree
General Terms width at mostk (and has at leastnodes). Note that SP Term con-

struction reduces the number of recursive constructors to 2 (regard-
less of the size of tree widt), at the cost of increase &f —k+1
constants. These constants express either diedges frarttlspe-

Algorithms, Language

Keywor ds cial node (called terminal) to thieth, or a graph with no edges, and
Program Analysis, Control Flow Graph, Register Allocation, Tree they can be treated in a uniform way. This makes writing recursive
Width, SP Term, Dynamic Programming, Catamorphism. definitions on SP terms feasible.

We illustrate our methodology with two examples: dead code detec-
tion and register allocation. Different from the traditional standard
iterative solution, our dead code detection is described as a simple
combination of bottom-up and top-down traversals on an SP Term.
Register allocation is more interesting, as it further requires opti-
mality of the result. We solve it as an instanceraixi mum marking
o o B i e o oot s o o b ODISTSL26, 27, B1 mrk he nodes of a controlfow graph undier
?ofspsrofit or commgrcial advantage ancii)that copies bea?this notice and the full citation a Ce_rtam Condlthn,SUCh that the sum of Welgh'_[Of_marked nodes is
on the first page. To copy otherwise, to republish, to post on servers or to redistribute Maximum (or, minimum). We make use Optimization Theorem
to lists, requires prior specific permission and/or a fee. from our previous work [26, 27], and show how it works to find an

ICFP'03, August 25-29, 2003, Uppsala, Sweden. optimal register allocation as a certain dynamic programming on
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

SP Terms. l1 l1 ol
The rest of the paper is organized as follows. We start by afonstants (e",(I1,12)) Il (e, (I1.12)) Il 2 |
overview of our basic idea in Section 2, through an example of 9% Q' 0%

dead code detection on a simple flowchart program without GOTO.

2 2 2
Its control flow graph has tree width at most 2, i.e., the class of o R °
series-parallel graphs. . . P*0) (641 S o
.) Series composition > = \
Section 3 presents an optimal register allocation with the fixed num- Lyt 17 2 y L 2 "
ber of registers for a flowchart program. The core of our technique 1@ G & Ot %S 66 2

is Optimization Theorem [26, 27], which automatically gives an ef-
ficient solution for maximum marking problems by certain generic

dynamic programming. The advantage and the problem of our 11.0)1(@] b 1o, | match(ly,l})

method are also briefly discussed. Parallel composition| 4 Pl = / ’0

Section 4 introduces the general definition of SP Term, and demon- 1,0)2(&l) 29) match(lz,15)
Gy Gy

strates how to extend dead code detection to a program that has a P, G, Gy
control flow graph with larger tree width. We show that once the Figure . Interpretation of e*, e, 2, S and P
reachability description is given, the description of dead code de- D '
tection will be uniformly extended to larger tree width.

Section 5 discusses related work, and Section 6 concludes the pa-
per. Throughout the paper, we consider only intra-procedural con- tuple (11, 12)
trol flow analyses (0-CFA), and describe algorithms in Haskell-like

notations.

of labels, defined as the followi ng.1

P = (', (Inl2))

S P, Sy, (|I1,||2))
. . . PSP, (I,

2 Dead Code Detection without Iteration 22 (1.12)
In this section, we explain our idea through a simple case study, An SP Termis interpreted as a pair of a 2-terminal series-parallel di-
dead code detection of flowchart programs. This class of graphsgraph and a tuple of 2-labels; a 2-terminal digraph is a digraph with
corresponds to the control flow graphs of structured (in strict sense) a tuple of two nodes, calleérminals. We can regard the first ter-
programs, i.e., programs that consist of single-entry and single-exit minal as the single-entry, and the second terminal as the next node
blocks. of the single-exit. Labelf,1,) are the identifiers of terminals. Let
The syntax of flowchart programs is described below. At the end of Match(l,1’) be the function that returns

the whole program, the end statement is assumed to be added. L =1 orl

ifl=1"orl" =
{ 1" if =«

1 otherwise

Prog:= x:=e assignment
| inputx input statement) .) . .
| output x output statement (i.e., accept the special labehs a wild card during matching).
| Prog; Prog sequence The constante™, (I3,12)) is interpreted as a diedge from the first
| if ethen Progelse Progfi conditional statement terminal to the second terminale™, (I1,l2)) as a diedge from
| whileedo Prog od while loop the second to the first terminal, a2das two isolated terminals.

The series compositio (t1,(I1,12)) (t2,(17,15)) fuses the sec-
ond terminal int; and the first terminal of, if match(lo,17) #L1,

Our key to the dead code detection without an iterative procedure is@d regard the first terminal ity as _the first and the sec-
ond terminal int, as the second. The parallel composition

the algebraic construction of control flow graphs, caf&dierm. S i . ;
i P (t1,(I1,12)) (t2,(13,15)) fuses each first and second terminals in
After translation from a flowchart program to an SP Term, we show . ? h ,
how t te th ts of d and \v defined variables i ty andty if match(ly,l7), match(l2,15) #L, and labelmatch(ly,17)
ow fo compute the Sels ot used and hewly detined vanavles In o, we first terminal andhatch(l, 15) on the second terminal.
each program fragment by a single bottom-up traversal over an SP.) . . .
The interpretation of each function symbol and constant is de-

Term, and explain how to compute the set of live variables at each bed in Fid. 1- al i d double circl d
terminal in each (sub) SP Term by a single top-down traversal over S¢fPed In Fig. 1; a terminal is presented as a double circle, an
labelslq, |, are associated to terminals.

an SP Term.
We prepare the functioohT that exchanges the order of the two
terminals of a graph.
chT T SPh— SR
21 SP Terms for Control Flow Graphs of T (€ () = (e (o)
Flowchart Programs chT (e, (Inln) = (e, (Ixl1))
Algebraic Construction of Series-Parallel Graphs chT (2, (I1,12)) = (2, (I2,lh))
Control flow graphs of flowchart programs are graphs with tree chT (Sxy, (I1,12)) = (S(chTy) (chT x), (I2,11))
width at most 2, which are known aeries-parallel directed graphs chT (Pxy, (I1,12)) = (P (chT x) (chTy), (I2,11))

(digraphs) [32]. Such graphs can be specified in tern&dferm.
Note that the following definition is somewhat simplified compared lin Section 4.1et, e, P, are denoted bg(1,2), 2(2,1), and
to that in Section 4.1 for general cases. P, respectively. For readability, we s8tt; t, = S (chT tp) ty,
DEFINITION 1. An SP Termis a pair of a ground termt and a whereS is uniformly defined in Section 4.1 fdr> 2.

P__

1 chT 1 1
—> —>

trans p e" chT (trans p)

)
20,

s.2 ! Pe'_ . @
= ()= [
+9 (€Y
) 20

Figure 2. Trangation of while statement to an SP Term.

Translation from Programs to SP Terms
We add labels to each statementdiog to identify each node in

Leaf nodes in an SP Term are eittest, e, and2. Each edge in
a control flow graph uniquely corresponds to eitaeror e~, and

a control flow graph. We denote the set of such labeled programseach while loop uniquely corresponds2o Thus, the number of

by LProg. The implementatiotrans of the transformation from a
labeled program to an SP Term is given below.

trans :: LProg — SP,
trans(l :x:=¢€) = (e",(l,*))
trans (I :input x) = (e, (I,*))
trans (I : output x) = (e, (1,%))
trans (py; p2) = (S(transpy) (trans pz), (I,*))
wherel is the starting line op;
trans (I : if ethen py else py fi)
(P(S(e",(1,%)) (trans p, (I,%)))
(S(e+>(|7*)) (tranS P2, (|7*)))7 (L*))
trans (I : whileedo p od)
(P(e*,(I,%))
(S(P (€. (1,%)) (chT (trans p) (x| +1)), (1,1 +1))
" ()2)7(*,*)), (1,%)),

Program CFG SP-term
®

2 ito (@

o te O

5: ;;vct:ll.ec e

7 e rae (5

o omiiin | (®

10: gglf put S e

19

Figure 3. An example of control flow graph and itstransforma-
tion to SP Term

For instance, the translation efhile-statement proceeds as in
Fig. 2. Intuition behind the wild character label™is; for each
fragment of a program, the first label denotes the entry of the frag-
ment, and the second label, which is alway5during transforma-
tion, denotes the next control point. Note that each program frag-
ment has the unique node labeled wiii."At the end x is replaced
with the label for the end statement, i.e., the end of the program.

leaves in an SP Term is equal to the sum of the number of edges
and while loops, which is proportional to the size of a progfam.
This concludes that transformation from a program to an SP Term
has (at most) linear growth in size.

Fig. 3 describes the control flow graph of the example program (in
Section 1), which computes the sum oR}:-- n for an inputn,

and its transformation to an SP Term tvgns. In Fig. 3, a tuple
associated to each subtree is a tuple of terminals at the interpretation
of the subtree.

Note that the description of a control flow graph by an SP Term
is not unique. For instance, gives an alternative description of the
same program in Fig. 3 (Transformatitmans is already nondeter-
ministic for py; p2. Fig. 3 is obtained by the left most decomposi-
tion, and Fig. 4 is by the righter most decomposition)

Figure 4. Another equivalent SP Term description

2.2 Dead Code Detection of Flowchart Pro-
grams

Our target is dead code detection, i.e., whether defined variables are
used before redefined. We use the following functions to extract
information from a node labeldd

defvl = {x} if the node is an assignmext= e or
a input statementput X.
=_ if the node is just an expression.
usevl =FV(e) ifthe node is either an assignment
X = eO0r an expression.
={x} if the node is an output statememit put x.

Detecting Used and Defined Variablesin a Fragment

We first prepare the functionsse; g, use, g, def;_»> g, and
def, .1 g that detect which variables are used and/or defined in a
sub SP Term of. use; g returns the set of variables that are used

2Assuming that tree width is at mokt |E| < k|V| whereV, E
are the set of nodes and edges, respectively [23].

({n},,{i,Sc},Vvar)

17

L1

(@.0.{i},var) _ 1: inputn; {n}
et ({ni},@{Sc}var) bottomup ({n} {ni}) e" top-down 2: i:=0; {n,i}
(@@.{S}.Var) & ({n.i.S}.¢.{c}.var) (ni%, {n,i.s}) e* 3: 8:=0; {n,i.S}
))] 4: c:=True; {n,i,Sc}
(¢.@.{c},Var) €" ({n,i,S.c}, ¢ Var) ({ni,s},{ni,sc}) e’ 5 while c {n,i,S!
({c}.q.@Var) € ({n.i,S},@.¢.var) ({ni,sc},{ni,s)) e .9 do .
({Sh.@.qVar) €’ ({n.i,S}, ¢, Var,Var) ({Sh.9) 673 2 Z ;.:Ii'e }2:2{
({ni.8}o.{i}.{Sc}) 2 (g.qVarVar) (Bishinis) 8: S:=8+i; {nis}
({it.@.{i},var) e (¢, {ni,S},var,{Sc}) ({n,i,Sh{ni,s}) et ({n,i,Sh @) 9: ci=i<=n; {ni,Sc}
_ ~ - d;
(<O~{nﬂ?,S},Var~,{S«,c}) € (@@ Var,{,c}) (s nis) 10: zutput S 0]
(@{n,i},Var {c}) e (¢.{Sc},var,{S}) ({n,i,S}, @) St
(@{c}Varg) ™ e(g{ni}Var{c}) (nishinisch® (nfscinsa)
(usey, usey, defy_o, defs_1) (Vs1,vsp) Detected live variables

Figure 5. Examples of use;, usey, defy .o, defy_.», and addLive

before being redefined in some pathgistarting from terminal 2.
defy ., g returns the set of variables that are newly defined in all
paths ing from terminal 1 to terminal 2 (if terminal 2 is reach-
able from terminal 1); and returnfar (the set of all variable$8)
otherwise. We omit the complementary definitions e, and
dEfzﬂl g.

use; (€%, (I1,12)) = usevlz

use (67,) = @

usey (2,) = @

user (Sxy, -) = usey XU (use y\def; . x)

use; (Pxy, -) = use; xU(usep y\defy o x) U
use; YU (usex x\ defi_o y)

def; .2 (e+> (Il>|2)) = defvl

defy .2 (e7> —) = Var

defj__,z (27 _) = Var

defi_ (Sxy,) = defi_ox U defy_ry

def; .o (Pxy,) = defy px N def; oy
Note that by tuplingise;, usey, defy_.», anddef,_.1, we can com-

pute the sets of live variables at terminal 1 and 2 in each sub SP

Term ofg by a single bottom-up traversal or{18].

Live Variable Detection without Iteration

After the computation ofise;, usey, def; ., anddef, .1, we as-
sume that each sub SP Termgias additional information of the
results of these functions.

Next we give a functioraddLive that associates the information
of live variables to each terminal in each sub SP Terrg.ifThe
function addLlive takes an SP Terrg and two sets of variables
vs; andvs, (both with the initial value ofp), wherevs; denotes
live variables outgoing frong at terminal 1 andss, denotes live
variables outgoing frong at terminal 2. It returns a pair of an SP

1: inputn; «<defv(l;) = {n} C {n}
2:i:=0; <defv(lp) = {i} C{n,i}
3: S:=0; < defv(lz) ={S} C {n,i,S}
4: c:=True;, <«<defv(ly) ={c} C{n,i,Sc}
5: whilec
do
6: i:=i+1,; < defv(lg) ={i} C {n,i,S}
7: c:=Fasg <defv(l7)={c} Z{n,i,S}
8: S:=S5S+i; < defv(lg) = {S} C {n,i,S}
9: ci=i<=n; <«defv(lg)={c} C{n,i,Sc}
od;
10:output S

Figure 6. Dead code detection of a flow chart program

addLive (Sxy, (I1,12)) vsy vsp
= (S(addLivexvs; (use; yU (vs; \ defy_2y)))
(addLivey (usep xU (vsy \ defa_1X)) vsp),
(11, Iz, vs1, Vsy))
addLive (P xy, (I1,12)) vs; vsp
= (P (addLive x
(vs1Uusey yU ((vsp Uusey x) \ defi_,2 y))
(V2 Uusep yU ((vsp Uusey x) \ defa1Y)))
(addLivey
(vsy Uusey XU (v Uusep y) \ defy 2 X))
(vspUusey XU ((vsp Uusey y) \ defy_1 X)),
(11, Iz, vs1, vs))

With the assumption thaisey, use,, def; _.», anddef,_.; are com-
puted and their results are storeddLive is done in a single top-
down traversal om.

Fig. 5 shows computation ofuse;,usey,def;_.»,def;_») and
addLive on a control flow graph in Fig. 3. At the terminals in a

Term and a tuple of the sets of variables that are alive at the terminal|o 4 in an SP Term, the detected set of live variables at each node is

1and 2.

addLive (e™, (lI1,12)) vs; vsp
(6%, (I, 12, vsy Uusev U (vsp \ defv), vsp))
addLive (e, (I1,12)) vs1 vsp
(e7, (1, 12, vs1, vsp Uusev I3 U (vsg \ defvly)))
addLive (2, (11,12)) vs1 vsp = (2, (11,12, vsi,Vsp))

Suse; g omits the used variables at terminal 1.

4Var satisfiesX NVar = X, X UVar = Var, andX \ Var = @for
each seX of variables.

obtained.

Dead Code Detection of Flowchart Programs

Now that the set of live variables at each node in a control flow
graph has been computed, dead code detection is straightforward.
A variable isdead if it is not live. Dead code is an assignment that
assigns a value to a dead variable. Thus, in the example in Fig. 5,
the assignment Z:=X+2 at line 8 is a dead code, since Z is dead as
in shown in Fig. 6.

3 Register Allocation for Flowchart Program

; X :)) . instruction register live variables
In this section, we show how to find an optimal register allocation 1: inputn; (.o {n}
as an instance ofraaximum marking problem. Our strategy is, first 20 =1 (n,_0) {ni}
write down the finite mutumorphic specificatiehecking whether 3: S:=0; (ni,.) {n,i,s
marking represents correct register allocation, and the weigjtreat STORES (n,i,S
counts the number of required LOAD/STORE instructions. Second, 4: c:=True (ni,.) {ni,Sc}
transformchecking to the form with foldSP by tupling transfor- 5: whilec (ni,c) {n,i,S}
mation [18]. Then, ifw is homomorphic, Optimization Theorem do
(Theorem 1 [27, 26]) automatically gives how to detect an opti- 6: i:=i+1: (ni,c) {n,i,s}
mal register allocation with certain generic dynamic programming 7: c:=False; (nji,c) {n,i,S
(i.e., a single traversal on an SP Term), assuming the live variables LOAD S (n,i,c)
are pre-computed. Note that we restrict ourselves to control flow 8: S:=S+i: (ni,s {n,i,s
graphs with bounded tree width, and do not intéhe NP, where STORES (n,i,S
the conventional optimal register allocation based on graph color- 9: ci=i<=n; (ni,)) {ni,Sc}
ing [10] is NP-complete. od;
For simplicity, we consider a flowchart programs (without GOTO) LOAD S (n,i,c)
as in Section 2. We assume that functiale$v |, usev |, and live 10 :output S (n,i,s) {}

variables at terminal labelddare pre-computed (as in Section 2).

3.1 Register Allocation

In a real computer, an instruction is executed with values on limited

Figure7. An example of optimal register allocation

number of registers. If needed inputs are not on registers, then they

must beloaded from memory; and if there are no room for them,
some values on registers mustdbered. These LOAD/STORE in-

MMP includes many interesting problems, such as knapsack prob-
lems, and optimized range problems in data mining [28]. Of course,

structions are usually expensive, and register allocation is an opti-j js not expected that every MMP problem can be solved efficiently.
mization that under fixed number of registers, find an optimal regis- | fact. MMP includes NP-hard problems, such as the knapsack

terusage, i.e., a program execution with the minimum use of LOAD 5 5hlem. However, for instance, the knapsack problem restricted to

(from memory to register) and STORE (from register to memory).
Basic operations on registers are either LOAD, STORE&e, or
execution of an instruction. When the number of registers is 4, for
instance, we have

LOAD X 17 (yT-Tz]-] — [yIxTz]-]

STORExry [y [x]z] -] — [y]-[z[-]

rgi=ri(move) [y [x[z[-] — [-[x[z]y]

ra:=ri+r y|xjz]-| — |ylx]z|u
whereu =y+Xx

For simplicity, we only concentrate on the number of

LOAD/STORE instructions, and do not care on the number
of move.

Fig. 7 shows the optimal register allocation for a simple program
(appeared in Section 1), which computes the sum of i wath 3

integer weight can be computed in linear time.

Let us consider more formally. The specification of MMP is de-
scribed as follows, where constraints are expressed by a boolean-
valued functionp and a weight functiomv.

mmp w p = selectmax wo filter pogen
The functiongen generates all possible marking on elements:

gen D—{D"}

D* is the data structure derived fratnwhere each node is attached
with a mark. The functiorfilter p takes a set of marked data and
selects ones that satisfy the propeptyThe functionsel ectmax w

takes a set of marked data and select one that has the maximum
value with respect to the weight functiem Then, we can derive

a linear time algorithm mechanically if the propenyis defined

by finite mutumorphisms, and the weight functiaris homomor-

phic [26].

registers? Here, each tuple of three variables represents a regis- pytumorphism is a set of mutually recursive functions, among
ter allocation just before each instruction is executed. The special\yhich no nested function calls occur and each argument of recur-
symbol . means that the register is either empty or permitted 10 gjye call is a sub-structure of the input [15]. Note that by tupling
overwritten. Note that between line 7 and 8, STORE c needs not yansformation, mutumorphism is transformed to a single catamor-
to be |nser_ted; |nstea_d we just overwrite S on c. This is correct, phism [18]. Although mutumorphism is defined on more general
because c is dead at line 7. data structures, from now on, we will consider SP Terms only.

3.2 Maximum Marking Problem DEFINITION 2 (FINITE MUTUMORPHIC PROPERTY[27]).

Maximum marking problem (MMP for short) can be specified as A Property p isfinite mutumorphidf it is defined by
follows: Given a data structure the task is to find a way to mark

elements inx such that the marked data satisfies a certain property p SP* — Bool
p and has the maximum (or, equivalently, minimum) value with re- p(e", a) = Qe a
spect to certain weight function. This means that no other mark- p(e,a = G- a
ing of x satisfyingp can produce a larger value with respecito p(2, a) = @a
P(Sxi%,a) = @s(hx)(hx)a
SStrictly speaking, LOAD/STORE instruction must be inserted P(Pxix2, @) = ¢p(hx)(hx)a

at the machine code level, but for simplicity we just insert

LOAD/STORE instructions into a flowchart program. wherehx = (px, f1 x, f2 X,..., fm X), which may use auxiliary

functions fy, ..., fm each of which hasfinite range of C;. hasan O(|C’| - n) algorithm described as

The core of Optimization Theorem is a generic dynamic program-

fi D SPF G
fi (e, a) = Qe a opt Yer We- W2 WsYp fst Per Pe- P2 Ps PP
fi(e7, a) = Qe @
fi (2, a) = @ra whereC’ =Cy x --- x Cy and n is the size of an input.
;i (Sx1x, @) = (ﬂs(uxl) (EXZ) a
(P _
i (Px1x2, @) @p (hxt) (hx2) a ming. The idea is; during data traversal, compute intermediate max-
If pis finite mutumorphic, tupling transformation [18] will yield a ~ ima for all possible states that may contribute to the finial maxi-
catamorphism foh. Therefore a finite mutumorphic propefycan mum. Finite mutumorphisméy, ..., fm describe state transition,
be described in the form of and finiteness of their ranges guarantee that such states are finite.
For the definition obpt and detail, refer to [27, 26].
p= fstofoldSP per pe- P2 Ps PP It follows from this theorem that we can detect all dead codes with
the propertymd and the weight functiomd by the following pro-

where fg is the function that takes the first element in a tuple and

the fold (catamorphism) operatioioldSP on SP terms is defined gram.
below. opt Y1 Y1 Y1 Yo Yo id b1 d1 $1 92 ¢2
foldSP de+ Pe- 02 dsOp =9 We will see a more interesting application of the theorem in the next
where ¢ (e", a) = ¢+ @ Section.

(e, a)=¢e a
¢ (27 a) = ¢2 a . A X
O (Sx1 %2, 8) = bs (¢ x1) ($ X2) @ 3.3 Optimal Register AllocationasMMP
b (Pxax, a)=¢p (¢ x1) (¢ x2) @ As an application of Optimization Theorem, we demonstrate the

To be concrete, recall the dead code detection in Section 2.2, WhereregISter allocation problem.

we have reached the point that each node is added with a set of live

variables. Assume that some nodes in the graph are marked (whic eck Wh :
can be checked bygM.) Now we may define the propertyd by hCh ether Each Terml nal Hasa Cprrect Mark
Let Var be the set of variables that appears in a program, and let

foldSP that all marked nodes in the graph are dead. . ; e
be the special symbol that means a register is either empty or ready

md = foldSP ¢1 ¢1 ¢1 d2 d2 to overwrite. The seReg of register allocations (we consider the
where size of registers is three) is defined as:
01 (I1,12,vs1,vsp) = valid (I1,vsy) Avalid (I2,vsp)
b2 pLp2a=piAp2Adra Reg = {(vi.---,Vn) | vi € Var U{_}, o
Herevalid is to determine whether a marked terminal node is dead, ViV Vvi=vi=_ ifi#j}
i.e.,valid (I,vs) =if isM | thendefv | C vselseTrue.
DEFINITION 3 (HOMOMORPHICWEIGHT FUNCTION [26]). An element inRey is labeled to each terminal in an SP Term as a
A weight function w is homomorphidf w is defined as a fold mark, which represents the register allocation state just before the

) instruction at the terminal being executed. Below, we will describe
w: SP* — Weight

~fol . e checking, which checks whether each terminal has a correct
w= foldSP e+ We- W2 Ws Wp mark, and
where s and p is described as a summation in a formlike e w, which counts the number of required LOAD/STORE in-

structions under a certain marking of the program.
A mark in Reg is a tuple, and we use the following operations (as
analogy to set operations). Let= (v1,---,Vn), I' = (V4,---, V) €

Ysrirpa=ri+ro+vsa
Yprirpa=ri+ro+vpa

for some functions vs and vp. Reg.
Continuing with the dead code detection problem, we may define a
weight functionnd to count the number of the marked dead n8des r\\r'=(v],---,v) wherev/ =if v = V] then_elsevy
nd = foldSP Y1 Y1 Y1 Y2 Y2 RT = (Vi
where
W1 (I1,12,vs1,vsp) =clp+cly The functionchecking g takes a marked SP-term associated with
Yo prpra=pi+p2 the line numbers in a program (denotedlbyl,), the sets of live
)) . variables (denoted bys; andvs,), and the marking that represents
Herec| returns 1 if the nodéis marked, and 0 otherwise. (pre-execution) register status (denotednyyandny) at terminal
THEOREM1 (OPTIMIZATION THEOREM[26, 27]). 1 and 2, and returns a Boolean value.

If the property p is finite mutumor phic and the weight function wis

homomorphic, MMP specified by checking (", (11,12, vs1,ve2), (M, my))

spec @ SP— P = ch((I1,12, vs1,vsp), (my,mp))

spec = mmpwp checking (e, ((l1,12,vs1,Vsz), (M1, Mp)))
— = ch((ly,l2, vsi,vsp), (Mg, mp))
This is not exactly true. In fact, all marked dead nodes except checking (2, (11,12, vs1,Vsz), (M1, My)))

for the two terminal nodes of the whole graph are counted twice. = ch((Iy,l2, vs1,Vsp), (My,mp))

CheCklng (SXy, ((|17|2> V517VSZ)7 (mlvrnZ)))

= let (m,m,) = getMarks x

mﬁﬂg) getMarksy

|nc hecking x A checkingy
my=m, A mp=mj A mh=m
checking (P . ({1 over.ves). (Me o))

= let (m,n,) = getMarks x

(rﬁ]’,) = getMarksy

in checking x A checking y
Amp=my Am=m{ Amp=m, A mp=m,
ch ((I,12, vs1,vsp), (M1, mp))
= usevlp CRV m C (vspUuseviy) A
usevlps CRV mp C (vspUusevly) A
|[defvii|+|RV mpnvs; \defviy| <n A
|defv iz +|RV mpNvsy \defviy| <n
getMarks (t,a) = snd a

The judgmentisev I3 C RV my corresponds to there-condition of
the instructionl; at terminal 1 ing, i.e., each variable used in the
instruction must be in some registerrim, and|defv I1| + |(my N
vsy) \ defv I1] < n corresponds to thpost-condition, i.e., m has

a room to write defined variableséfv |1); otherwise, some live
variables inm; except for those defined &t will be overwritten
before stored. Notice the obvious optimizing conditions

RV my C vsg Uusev |y
RV mp C vsp Uusev |

in ch ((I1,12,vs1,Vsp), (Mg, my)), which mean that live variables in
registers are as many as possible.

The checking property is defined as finite mutumorphisms with the
functiongetMarks. By tupling transformation, we get the following
form:

checking = fst o foldSP pe+ pe- P2 Ps PP

where
Pe+ (X, @) = (cha, snd a)
pe- (X, @) = (cha, snd a)
p2 (X, a)—(ch a, snd a)
Psxya
= let (m},m,) =snd x (m/,m)) =sndy (my,m) =snd a
in(fsxAfsyAm=m Amp=nmj A m,=nv,
(mg,myp))
Pp Xya
= let (my,m,) =sndx (M],m)) =sndy (m,mp) =snd a
in(fex A fgy A (ml_nf A mg =n))
A (mz:rré1 A Mp =),
(my,my))

Here we include obvious optimizing conditions

RV m Cvs U usevliyq
RV mp Cvs, U usev |

to ch (1,12, vs1,vsp, my, my), which mean that live variables in reg-
isters are as many as possible.

Weight Counts the Number of Required LOAD/STORE
The weight functiorw is defined as follows.

Egll,lz,vsl,vsfz), Eml, mp))) = count I3 vs; my mp

w(e",

w (e) |1>|27V51>V5f2)7 mg, My))) = count |2 VS Mp My
W (2, ((I1,12,vs1,vs), (Mg, mp))) = O

W(S Y, ((|l>|27V517VSZ)> (ml>))) = WX+WYy

w (Pxy, ((I1,12,vs1,Vsp), (M, Mp))) = WX+wWy

count | vsmm/
= legV=(R/mn vs) U defvl
inif vV ¢ RV ml
then max|(V \RV n7) N vs|+|RV m' \ V|
elseif V| <n then RV m'\V]|
else if RV (m \\ m) =@ then0
else?2

The functionw counts the number of required LOAD/STORE at
each edge (uniquely representedddyor e™), and just sums up for
recursive constructoiSandP.

The intuition forcount is: V is the set of variables that are placed on
the registers after an instruction is executed/ I§ not included in
the next register statug/, then their difference must be stored and
loaded. Betwee®TORE andLOAD operations, we can reorder the
positions of variables bynove operations. Assum¥ is included

in the next register status/. If [V| < n, this means there exists
a register with_, and we can reorder variablesVh Otherwise,

V =R/, and ifRV (m \\ m) # @we need to make room by a
pair of STORE andLOAD operations for reordering.

The above definition of the weight functienis homomorphic, and
w is defined byfoldSP as follows.

e+ a

= let ((I1,12,vs1,vs2), (Mg, mp)) =a in count Iy vsy my mp
We- @

= let ((I1,12,vs1,V82), (M1, mp)) = a in count Iz vsp My My
Yra==0
Usxya = X+y
Upxya = xX+y

Applying Optimization Theorem, and Discussion

With all the above, Theorem 1 automatically derives the solution
for optimal register allocation.

At last, two points are worth remarking:

1. In real compilers, there are often practical requirements of
hardware, such as, some instruction must use some specific
registers, some register must be used together with some spe-
cific registers, or the result of some instruction must be writ-
ten in a different register. These requirements are hard for the
conventional graph coloring method [10], but our method is
easy to handle them by modifying the functidrecking.

2. We obtain an optimal register allocation without iteration. The
core of the technique is dynamic programming on SP Terms.
The cost to pay is huge marking space, which grows expo-
nentially to the number of registers. However, sighecking
can be judged locally (like forall in Haskell), most of marking
is avoided by default. We expect demand-driven computa-
tion.helps the situation.

4 Analyzing Control
Larger Tree Width

In this section, we discuss how our method can be extended to wider
class of programs. The example is again dead code detection; but
for a program that has a control flow graph with tree width larger
than 2. For simplicity, we mostly consider control flow graphs with
tree width at most 3. Our construction is uniform and extension for
larger tree width is straight forward, if we assume the description
on reachability among terminals.

Due to lack of space, we do not expldree decomposition, which
gives the original definition of tree width [25]. Instead, we treat a
(di)graph with tree width at mostas a (di)graph denoted by an SP
Term inSP.

Flow Graphs with

41 SPTerms

In Section 2.1, we show how an SP Term of a control flow graph
of a flowchart program (i.e., a series-parallel graph) is computed in
linear time. In this section, we give definition of general SP Term

e\ @
ox \@
15N
%_\Q
@

G
(for graphs with larger tree width) and show that translation will be > ANNG
done in linear time. i 2 02 ©) 3
DEFINITION 4. An SP Termis a pair of a ground term t and a G, G \©@ 2

tuple (1(1),---,1(k)), defined as the following.

! 1 ©430
S = Ew(i,j)’ (1), 1K) (1 #J) t\%z/;

Lk (@) 10)
&SR (W) st g

—_———

| PSS (1), 1(K))

Here, 1(1),---,1(k) are labels, Py is the parallel composition, and

S isthe series composition.

SP Terms (Q((Lj),(l(l),,l(k))) and (k7(|(1)77|(k))) .@ @
are interpreted ask-terminal digraphsG, G’ with terminals

Gs3 1®
&5 5O<~—®

[Q)
Akr)z‘\J;@
®w [

(1(1),-+-,1(k))) and 276 G
{v<e>={l<17~~,|<k>}, E(G) = {(1(1),1(j)}, G
V(G)={I(1),-,1(K}, EG)=e

i.e.,k-noded (1),---,1(k) with one diedge fron(i) tol(j), and i.e.,
kisolated nodeb(1),---,I(k), respectively (See Fig. 8).

2
1
iq © o 20" 9 ok
© ° 30
© o ’ 40
j© 5
a((|7 J) k 2 o‘.)4
Figure 8. Interpretation of constants g(i, j) and k ﬁ!
3
Series compositiofSc t1 -+ tk, (1(1),---,1(k))) is interpreted in S Gy Gy S Gy Gy G $, G Gy G3 Gy
3 steps. See Fig. 9 (In Fig. 9 and 10, a double circle expresses a .) . .
terminal). Lett = (t/, 1i(1),---,li(K)). Figure9. Interpretation of series composition S, 3, &4

1. Shift the numbering of terminalsip i.e., thej-th terminal to
the j -+ 1-th terminal for each withi < j <k.

2. Fuse each terminal of the same numbering and put a label

©)1
match (I1(i = 1), li—a (i — 1), liza (i), -+, (i) o
to thei-th terminal if ! 9)2
match(ly (i — 1), li—a (i = 1), lipa (i), (i) #L . ©)2(@ ©)3
G1 Gz Gl
3. Remove the last terminal (labeled $ in Fig. 9). @pz @
wherematch (1(1),---,1(k)) is an abbreviation of
match (I(1),match (1(2),---,match (I(k—1),1(k))---). Q/l,
Parallel compositioiiP ty to, (1(1),---,1(k))) is interpreted similar 2
to P in Section 2; fuse each terminal of the same numbering4n Py G. G
(t17 |1(1)7 o >|l(k)) andtZ = (té> |2(1)7 e 7|2(k))v and pUt a label L2
match (11(i),l2(i)) to thei-th terminal if match (I1(i),l2(i)) #L.
See Fig. 10.

Intuition behind is; like that the parallel compositipp constructs
any subgraph in a complete graph, the series compositiof;
combines such components and produces a clique of thé side Figure 10. Interpretation of parallel composition Py, Ps, Py
(i.e., an embedding dfy. 1).

P4 G1 G2

ExampPLE 1. InFig. 9, the digraplsz(Gy, Gy, G3) has tree width
3, andGy, G,.G3 have tree width 2. The SP Terms @f, Gy, G3
are described as

Gl = S3(P3(e3(27 3)763(37 l))7 P3(e3(17 2)763(17 3))73)

GZ = S3(P3(e3(172)7e3(173))7e3(37 1)73)

Gz =$5(3,63(1,2),
S3(P3(e3(172)7e3(173))7P3(e3(172)7e3(371))73))

REMARK 1. SP, (series parallel graphs) allows several choices
for definition of the series composition. For instance, definition of
Sin Section 2 is different from S here; they can be related as

Sxy=chT(S x (chTy)).

S is the part of uniform way to define the series composition for
each SP; however, for readability, we used the simplified version S
in Section 2.

REMARK 2. The definition of series composition S, and parallel
composition Py are given by Arnborg, et.al. in a different aspect of
an algebraic construction of graphs with bounded tree width [3].
Note that if once an SP Termt is given, tree decomposition [25]
of a corresponding graph is straightforward: a backborntree T as
V(T) = {s| sCt} and a covering Xs for s€ V(T) as the set of
terminalsins.

THEOREM 2. Let G be a digraph with twd(G) < k and
V(G)| > k for k> 2. Then, an SP Term is computed in linear
time (wrt |V (G)|) such that itsinterpretation isa pair of k-terminal
digraph G and a tuple of k-terminals with G = G by neglecting ter-
minals.

In general, deciding the tree width of a graph is NP-complete; how-
ever, for fixedk, whether a graph has tree width at mké decid-

able in linear time [7, 24]. Fortunately, we already know the upper
bound of the tree width of control flow graphs of some specific pro-
gramming languages.

This shows the general method to compute an SP Term from a con-
trol flow graph via tree decomposition. This is done in linear-time,
but not so efficient linear time. However, a direct translation (such
astrans in Section 2.1) from a program will be much more effi-
cient, because a control flow graph loses the parsing information of
an original program. For a simple imperative language with GOTO,
such a translation is shown in Appendix A.

4.2 Alternative Definition of Dead Code De-
tection on SR,

Before the extension, we give the alternative definitions of the func-

tionsuse; g, use; g, addLive g vs; vsp for SP, in Section 2). Recall

that the original definition is as follows (taking account into the

modification ofSinstead ofS):

usey (62(172)7 (lla 2)) = U59V|2

user (€2(2,1),-) = ¢

use (2,) = @

use; (S xy, -) = usey yU(use; x\defy_.oy)

user (P2xy, -) = usey XU (usez y\defy o x) U
use; yU (usep x\ defy o y)

defi2 (2(1,2), (I1,12)) = defvl,

defi2 (e2(2,1), -) = Var

defl_,z (2,) Var

defi 2 (S xy,) = defioy U defa g X

defi_» (Pz XY, _) = defiox N defi_oy

addLive (e(1,2), (I1,12)) vs1 vs;
= (€2(1,2), (1, Iz, vsyUusev I U (vsp \ defv),
addLive (€2(2,1), (Ig,12)) vs1 vsp
= (&2(2,1), (11, I2, vs1, vspUusev I3 U (vsy \ defv)
addLive (2, (I1,12)) vs1 vsp = (2, (I1,l2, vs1,Vsp))
addLive (S xY, (I1,12)) vs vs
= (S (addLiveyvs; (usepx xU (vsp \ defa_,1X)))
(addLive x vsp (usep yU (vs \ defa_.1y))),
(11, 12, vs1, vsp))
addLive (P> xy, (I1,12)) vsy vsp
= (P, (addLive x
(vs; Uuser yU ((vs Uuse; x) \ defr—2 y))
(Vs Uuse; yU ((vsy Uuser X) \ defpy y)))
(addLivey
(Vs; Uusey XU ((vspUusep y) \ defy .2 X))
(vspUusez XU ((vs Uusey y) \ defz—1 X)),
(11, I2, vs1, vsp))
The alternative definition below contains some redundant computa-
tion. This is because generality of the definition, if one considers to
extend to generd. Note that distributivity ofy wrt U and inclusion
like use, g\ def1 .2 g C use; g can absorb the differences.

use; (e2(1,2), (I,12) =
use; (e2(2,1), (Ig,l2)) =
user (2, (I1,12)) = @
use; g@(Szxy,(,12)
= use; XU (usey y\d
user g@(P> xy, (I1,12)
= (usep xUuser y) U ((usez xUusep y) \ defi_; g)

V)

)
?f1—>2 9) U ((use xUusep y) \ defy . x)

addLive (&(1,2), (11,12)) ve1 Vs

(e2(1,2), (|17 l2, vs; U usevlz U (v \ defvlp), vsp))
addl-lve((2,1), (Ig,12)) vsy v

(e2(2,1), (|17 2, vsy, v, U usevly U (vsg\defvly)))
addLive (2, (I1,12)) Vs, vs, = (2, (I1, I, vsy,vs,))

addLive g@(Sz xy, (I1,12)) vs1 vsp
= (S (addLiveyvs; usex x U ((vsp U usep X) \ defa_,1x))
(addLivexvs; use; y U ((vs1 U usey y) \ defz_1y)),
(I3, 12, vs,vsp))
addLive g@(P> xy. (I1.12)) vsy vs,
= letvs, = vs U ((vsp U usex X U usep y) \ defy .2 @)
Vs, = VS U ((vsp U usep x U use y) \ defz_; 9)
in (P, (addLivex (usery U vs;) (usepy U vs,))
é) (use;x U Z)),

(addLivey (use; x U
(11, I2, vs1, vsp))

4.3 Dead Code Detection for Larger Tree

Width

ifi=1
otherwise

usev |
¢

use; (e3(|]) (lla|27|3))

Used/Defined Variablesin a Fragment in SP;

user (3, (I1,12,13)) = @

use; g@(S xyz (I1,12,13))

= use;y U use zU
((usey xUusez 2) \ defy ., g) U
((usep xUusep y) \ defy .3 g) U
((uses XU uses yU uses z) \ def;_.g)

use; g@(P3 xY, (I1,12,13))

= (usey X U user y) U
((usez xUusep y) \ def12 g) U
((usez xUuses y) \ defy .3 g)

The basic idea is the same as thatuse; g for SP, except

for the modification((uses xUuses yUuses z) \ def; g g) in
use; g@(Sxyz (I1,l2,13)). $is the newly introduce symbol that
represents the removed terminalSixy z, i.e., terminal 3 inx,y, z.
For SP,, def;_.g (Sxy) coincides withdef;_,» x, because paths
from terminal 1 to terminal 2 ixx are only paths from terminal 1 to
$ in g without loops. Thus, foBP,, the need for $ is hidden.

defi_z (es(i,), (I1,12,13))

defvl, ifi=1,j=2
Var otherwise
defl—>2 (37 (|13|27|3)) = Var

defy .2 (83 Xy z (|17 I2, |3))
= defi2znN
(defy_2y U defy_,1 x) N (defy .3z U defz .1 X)
(defl_,g yu def3_,2 Z) N (defj__,g yu defg_,]_ X)
(defy .3z U defz_oy U defa.1x) N
(defl_,z y U defy_,3x U defz .o Z)
defy .o (P3xy, (I1,12,13))
= defi_oxnNdefioyn
(defy .3y U defz o x) N
defy_g (Sxyz (I1,12,13))
= defy .3y ndefy.3znN
(defl_,z yu defz_,g X) N (defj__,g zU defg_,g X) n
(defy .oy U defa 1 x U defa.32) N
(defl_,z z U defy_o x U defyo_.3 y)

N
n

(defi .3 x U defz .o y)

The definition ofdef;_,» in SP3 is quite complex especially for
Sxyz The intuition can be obtained by replaciogN with A, V,
respectively. Then, by setting values for base cases as

True if (i,j)=(1,2)
False otherwise

reachy > (&s(i, j), (I1,12,13))
, (I1,12,13)) = False

reach; > (3

the same definition gives us the judgment of reachability from ter-
minal 1 to terminal 2 irg.

Live Variables Detection for SP;
Now, we give definition obddLive to detect live variables fogPs.

addLive g@(es(1,

= (e3(1,2),

(I3, 12, 13, vy Uusev 2 U (vsp \ defv lp), vsp, vsz))

addLive (3, (I1,12,13)) vs1 vsp vs3

= (3, (I1, I2, 13, vs1, vsp, vs3))
addLive g@(S3 xy z, (I1,12,13)) vsy vsp vss

= letvs] = (vspUuse; yUuse; z) U
((vspUuse; xUusey 2) \ defy_,») U
((vssUusep xUusep y) \ defy 3 g) U
((uses xUusez yUuses 2) \ def; g g)
((vs1Uusey yUuse; z)\ defa.1 g) U
(vs,Uuser xUusey z) U
(
(
(
(
(

2), (I1,12,13)) vs1 v vs3

Vs, =

(vssUusep xUuse, y) \ defa 3 g) U
(usez xUuses yU uses 2) \ defz g 9)
(vs1Uuser yUuse, 2) \ defs 1 g) U
(vsUusey xUusep) \ defz_z g) U
vszUuse, XU usey y) U

VS

(usez xUuses yU uses) \ defz g g)
(vsiUuse yUusey z) \ defg .1 g) U
(vsUuse; xUusey) \ defg_,, g) U
(v53 Uusep xUusey y) \ defg .3 9) U

((uses xU uses yu uses 2)
addleexvz 2 addleeyv§l vs; vs')
addLivez v

(I1, 12, 13, vs1, vsp, VSs

(
=
(
(

addLive g@(Ps xy, (I1,12,13)) vsy vs; vss
= letvs; = (vspUuse; xUusey y) U
((vspUusep xUusep y) \ defy o g) U
((vs3Uuses xUusez y) \ defy .3 g)
vs, = ((vsiUuse; xUuse; y)\defp .1 g) U

(vspUusep xUusey y) U

((vs3Uuses xUusez y) \ defz3 g)

((vspUuser xUusey y) \defz .1 g) U

((vxUusep xUusep y) \ defz .2 g) U

(Vsg U uses XU Uses Y)

n (P (addLive x vs] vs, vs;) (addLivey vs; vs, vs;),

(11, 12, 13, vs1, Vs, vs3))

Vs, =

Discussion

Here, we present our study only f8P3, i.e., tree width at most 3.

It is worth mentioning the analogy betwedaf;_.j andreach; .,

and the difficulty to extend to graphs with larger tree width is fo-
cused on the reachability description among terminals. Current our
description isnot parametric wrt tree width, i.e., we must describe,
say, dead code detection for ea®®. However, we have a basic
feel that there would be some genesiel eton-like structure regard-
ing reachability. That is, with the description of reachability $8%

and the description of an analysis f&®,, we can generate the de-
scription of an analysis for gener&h.

Of course, with the increase of tree width, the number of functions
rapidly grows. But, recall that most JAVA programs (and possi-
bly other imperative programs) have a control flow graph with tree
width at most 3 [16]. Thus, even for relatively small tree width, our
method would cover quite large portion of real programs.

5 Reated Work

Many researches have been devoted todduobarative approaches

to program analyses. Steffen and Schmidt [31, 30] showed that tem-
poral logic is well suited talescribe data dependencies and other
properties exploited in classical compiler optimization. Lacey,
et.al. [21] formalized program optimization as rewriting systems
with temporal logic side conditions (described in CTL-FV) and
shows that CTL-FV plays a crucial role in tipeoofs of correct-
ness of classical optimizations. Instead of temporal logic, de Moor,
et.al. [12] proposed another functional approach to control flow
analyses. Their specification language is the regular path condition,
but the efficiency of derived programs is not discusses.

There are several functional approaches for computation on graphs.
For instance, Fegaras and Sheard [14] treat graphs with embed-
ded functions, i.e., graphs are treated as functions that generates
all paths in a graph. Erwig introduces thetive pattern matching,
which is a conditional pattern matching mechanism [13]. Their ap-
proaches are interesting in description, but the existence of strong
side conditions limits the chance to optimize. Instead, we restrict
ourselves to graphs with bounded tree width, in which many NP-
hard graph problems are solved in linear-time [11, 9].

The concept of a graph with bounded tree width [25] independently
appeared from early 80's; partikdtree in terms of cliques, some
algebraic construction dé-terminal graphs [4, 3], and in terms of
separators, and they are all equivalent. The class of graphs with
bounded tree width is quite restrictive; but the significant tread-
off is: The class of graphs with bounded tree width frequently
has a linear time algorithm for graph problems. For graphs with
bounded tree width, there have been lots of work on automatic gen-
eration of linear-time algorithms from specification in monadic sec-
ond order formulae, which are frequently NP-complete for general
graphs [11, 9].

Our starting observation is that most programs (without spaghetti
GOTO) have control flow graphs with bounded tree width, and

many control flow analyses can be specified in temporal logic (such only if the left-hand-side figure in Fig. 11 is contained [17]. How-
as CTL-FV). By combining them, it seems easy to obtain (almost) ever, that graph is easy to treat from tree width point of view; it is
linear-time algorithm for control flow analyses. This is true in the- described irSP, as

ory, but not in practice; each existence of quantifiers in a formula

causes the exponential explosion of the constant factor. Our ap- 2 €(1.2) (P2 (S (P2 €2(1,2) €2(2,1)) €2(1,2)) €2(2,1))

proach is, directly write functional specification on the simple data (yith terminal 1 at the top and terminal 2 at the rightmost node).
structure, SP Term. This approach drastically reduces the constanjp, contrast, a complete directed acyclic graph (DAG) witmodes
factor [27]. Further, an SP Term is more approachable especially (35 in the right-hand-side figure in Fig. 11) is describecSi,
from programming point of view, and it does not refuse to capture proportional to the sizen. However, any DAG is reducible.

better algorithmic ideas.

For an algebraic construction of graphs, one of the early work for

flowchart scheme is found in [29]. Bauderon and Courcelle [4] are

also pioneers, and our SP Term is greatly in debt to the work by — reducible reducible

Arnborg, et.al. [3]. However, their constructions do not fit to our € # P2

purpose; for instance, the construction by Arnborg, et.al. [3] re-
quires the recursive constructdﬁ'srj,sj ,pj with 1 <i < j <kfor
graphs with tree width at mo#t Thus, the number of their re-
cursive constructors becomie&+ 1)(k+ 2)/6, and this makes us .
difficult to write recursive definitions. We proposed another con- 6 Conclusion and Future Wor k

Figure 11. Difference between reducible flow graph and SP
Term

struction, SP Term, which has only 2 recursive construcirB In this paper, we proposed aterative-free approach to program
regardless of the size & The number of constang(i, j) has analysis, based on the fact that control flow graphs of most prac-
square growth, but they are interpreted as diedges fromtéo tical programs are well structured. Our main contributions can be

the j-th terminal. For these constants, writing functional specifica- symmarized as follows.
tion (base cases) is easy; even in uniform way.

Thorup [33] showed that a structured imperative program have a
control flow graph with relatively small tree width. He also inves-
tigated on findingnear optimal register allocation by the conven-
tional graph coloring on an intersection graph. It is well known
that register allocation is equivalently reduced to the graph coloring
problem [10], which is known to be NP-complete. For precise solu-
tion, it seems pessimistic; Kannan and Proesbsting showed that the
number of minimal coloring (thus deciding the minimum number
of registers that can be allocated without spilling) is NP-complete ~ ® We identified that many program analyses can be considered

e We defined a simple but powerful algebraic construction of
digraphs called SP Terms, on which program analyses can be
naturally described as catamorphisms (or mutumorphism). As
catamorphism enjoys many nice algebraic rules such as fusion
and tupling for algorithmic optimization [6], this catamorphic
formalization of program analyses makes it possible to sys-
tematically derive efficient analysis algorithms, which has not
been really recognized so far.

even forSP, (series parallel graphs) [19]. as the maximum marking problems. By making use of the
However, if we further assume that the number of registers is fixed, optimization theorem for them, we are able to obtain efficient
we can obtain an efficient solution. Bodlaender, et.al. showed a analysis algorithms.

linear-time algorithm to decide whether a program can be executed ¢ As demonstrated by two examples, our method is quite power-
without spilling for a fixed number of registers [8]. This is elegant ful. In fact, many program analysis examples in the compiler
in theory; however, their estimation includes the blow up of tree textbook can be cast into this framework.

width of an intersection graph of a family of subgraphs. Thus, their This research is just at the beginning, and there are lots of subjects
constant factor explodes. to conquer.

Our method based on Optimization Theorem could also have ahuge , As pointed in Section 3, the table for dynamic programming
constant factor, which can grow to the power of the number of live technique can easily explode. Although our method drasti-
variables. However, there is possibility to tame it. For instance, we cally improves constant factor compared to starting from for-
could expect the number of live variables at each program point are mulae [27], still this is quite true. However, we only need the
not so large, and most of markings would be avoided immediately. computation that can reach to the result satisfying given con-
These observation suggest that, in practice, there seems a roomto gyraints, and, from our experience, computation in most part
improve the constant factor drastically by demand-driven computa- of the table does not contribute to obtain such results. There-
tion and other program transformation techniques, which are avail- fore, we hope demand-driven computation will improve the
able for functional programs. For instance, Ohori proposed another situation, and would like to confirm it by experiments.

register allocation by proof transformation on typed assembly lan- o . .
guage, which reduces the number of candidates of optimal register ® Currently, our description of analysesnst parametric wrt

allocations [22]. The combination with such methods would be tree widthk. However, as Section 4 suggests, the reachability
worth exploring. description would work as a generic skeleton-like structure.
We should mention another classical efficient solution under cer- We have a strong feel about it, but it must be more concrete.
tain restriction of control flow graphseducible flow graph [2, 1]. e The setof SP Terms s aninitial algebra; howevértarminal

If a program has a reducible control flow graph, one can con- graph may have multiple representations by SP Terms. This
structn (log n) algorithms for program analyses, such as com- means whether the user defined functional specification is
mon subexpression detection. Knuth also showed that most FOR- consistent with the interpretation of SP Termsktterminal
TRAN programs have reducible control flow graphs by an empirical graphs is up to the user’s responsibility. For instance, in Fig. 5,
study [20]. different occurrences in the SP Term of a node in the control
SP Term is independent to the concept of a reducible flow graph; flow graph have the same set of live variables. This is guar-
for instance, Hecht and Ullman showed a graph is reducible if and anteed by user's semantic consideration. From its own the-

oretical interest and possible better support, we hope to give

the complete axiomatization of SP Terms under this interpre- [16] J. Gustedt, O.A. Meehle, and A. Telle. The treewidth of Java

tation.

Acknowledgments

The authors thank Oege de Moor and Jeremy Gibbons for stimu-

lating discussions during their visit at the University of Tokyo, and
thank Aki Takano for his helpful suggestions. We also thank anony- [18]

mous referees and Fritz Henglein for their valuable comments and
suggestions. Last but not least, we thank Masato Takeichi for his

continuous support.

7 References
[1] A. Aho, R. Sethi, and J.D. UllmanCompilers — Principles,

(2]
(3]

(4]
(5]
(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Techniques, and Tools. Addison-Wesley, 1986.
F.E. Allen. Control flow analysisACM SIGPLAN Notices,
5(7):1-19, 1970.

S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese.
algebraic theory of graph reductiodournal of the Associa-
tion for Computing Machinery, 40(5):1134-1164, 1993.

An

(17]

(19]
(20]

[21]

M. Bauderon and B. Courcelle. Graph expressions and graph [22]

rewritings. Mathematical System Theory, 20:83-127, 1987.

R. Bird. Maximum marking problemslournal of Functional
Programming, 11(4):411-424, 2001.

R. Bird and O. de Moor.Algebra of Programming. Prentice
Hall, 1996.

H.L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidt&8l.AM Journal Computing,
25(6):1305-1317, 1996.

H.L. Bodlaender, J. Gustedt, and J.A. Telle. Linear-time reg-
ister allocation for a fixed number of registers. Rroc. Sth
ACM-S AM Symposium on Discrete Algorithms, SODA 1998,
pages 574-583. ACM Press, 1998.

R.B. Borie, R.G. Parker, and C.AoVey. Automatic genera-
tion of linear-time algorithms from predicate calculus descrip-
tions of problems on recursively constructed graph families.
Algorithmica, 7:555-581, 1992.

G.J. Chaitin. Register allocation & spilling via graph coloring.
In Proc. ACM Symposium on Compiler Construction, pages
98-105. ACM Press, 1982.

B. Courcelle. Graph rewriting: An algebraic and logic ap-
proach. In J. van Leeuwen, editétandbook of Theoretical
Computer Science, volume B, chapter 5, pages 194-242. El-
sevier Science Publishers, 1990.

O. de Moor, D. Lacey, and E. van Wyk. Universal regular
path queries. to appear in High Order Symbolic Computation,
2002.

M. Erwig. Functional programming with graphs. Rroc.
1997 ACM SIGPLAN International Conference on Functional
Programming, pages 52—-65. ACM Press, 1997. SIGPLAN
Notices 32(8).

(23]

(24]

(25]

(26]

(27]

(28]

(29]

L. Fegaras and T. Sheard. Revisiting catamorphisms over [30]

datatypes with embedded functiofws, programs from outer
space). In Proc. 23rd ACM S GPLAN-SIGACT Symposiumon
Principles of Programming Languages, pages 284-294. ACM
Press, 1996.

M. Fokkinga. Tupling and mutumorphismSguiggolist, 1(4),
1989.

(31]

programs. InProc. 4th Workshop on Algorithm Engineering
and Experiments, ALENEX 2002, pages 86—97, 2002. Lecture
Notes in Computer Science, Vol. 2409, Springer-Verlag.

M.S. Hecht and J.D. Ullman. Characterizations of reducible
flow graphs.Journal of the ACM, 21(3):367-375, 1974.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling cal-
culation eliminates multiple data transversals. Phoc. 2nd
ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 9—11. ACM Press, 1997.

S. Kannan and T. Proebsting. Register allocation in structured
programs.Journal of Algorithms, 29:223-237, 1998.

D.E. Knuth. An empirical study of FORTRAN programs.
Software Practice and Experience, 1(2):105-134, 1971.

David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian
Frederiksen. Proving correctness of compiler optimizations
by temporal logic. InProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
283-294. ACM Press, 2002.

A. Ohori. Register allocation by program transformation. In
Programming Languages and Systems, 12th European Sym-
posium on Programming, ESOP03, pages 399-413, 2003.
Lecture Notes in Computer Science, Vol. 2618, Springer-
Verlag.

L. Perkovt and B. Reed. An improved algorithm for finding
tree decompositions of small width. In Widmayer et al., edi-
tor, WG’ 99, pages 148-154, 1999. Lecture Notes in Computer
Science, Vol. 1665, Springer-Verlag.

L. Perkovt and B. Reed. An improved algorithm for finding
tree decompositions of small widthnternational Journal of
Foundations of Computer Science, 11(3):365-371, 2000.

N. Robertson and P.D. Seymour. Graph minors Il. algorith-
mic aspects of tree-widthlournal of Algorithms, 7:309-322,
1986.

|. Sasano, Z. Hu, and M. Takeichi. Generation of efficient
programs for solving maximum multi-marking problems. In
Proc. 2nd International Workshop in Semantics, Applications,

and Implementation of Program Generation, volume 2196,
pages 72-91. Springer-Verlag, 2001. Lecture Notes in Com-
puter Science.

I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Make it prac-
tical: A generic linear-time algorithms for solving maximum-
weightsum problems. IRroc. 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 137—
149. ACM Press, 2000.

I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Derivation of
linear algorithm for mining optimized gain association rules.
Computer Software, 19(4):39-44, 2002.

H. Schmeck. Algebraic characterization of reducible
flowcharts. Journal of Computer System Science, 27(2):165—
199, 1983.

D.A. Schmidt. Data flow analysis is model checking of ab-
stract interpretations. IRroc. 25th ACM S GPLAN-SIGACT
symposium on Principles of Programming Languages, pages
38-48. ACM Press, 1998.

B. Steffen. Data flow analysis as model checking.Theo-
retical Aspects of Computer Science, volume 526 oflecture
Notes in Computer Science, pages 346—364. Springer-Verlag,

1991. permT 2 SPp2 — SPhy2

[32] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time pe:m(];(j?éélmT X);Tf)’(gér’mf lQBZ))
computability of combinatorial problems on series-parallel - (permT %) (permT Xng2), (Inttl1,- 5 InIns2))
graphs.Journal of the Association for Computing Machinery, permT (Pni2 X Y, (I1,-++,Int2))
29:623-641, 1982. = (Pny2 (permT x) (permT y), (Iny1,11,--+,1n,Ins2))
[33] M. Thorup. All structured programs have small tree width permT (ens2(i,]), (I1,-+-.Int2))
and good register allocatiorinformation and Computation, = (ens2((permi), (perm j)), (In+1,11. -+ In;Int2))
142:159-181, 1998. permT (n +2|, (|1,|~ . 7|n4i2)|)
A Computing SP Termsdirectly from Imper- (N+2, (ns1,l2,7 - Insne2))
ative Programs perm :: Nat — Nat
To show the direct translation from an imperative program with permm = if m==(n+2)thenm
GOTO to an SP Term, we define a simple imperative language. The elseif m==(n+1)thenlesem+1
definition, given in Figure 12, is similar to that in [21], except for
the additional “while” construct. For simplicity, this language has addG :: SPpi2 — SPpi2
no exceptions or procedures. addG (Syi2 X1 -+ Xne2, (I, 1lne2))
= addE (Sy12 (addG xy) -+ (addG Xn;2), (11, In+2))
addG (PI"H—Z XY, (lla e a|n+2)a (|17 o ’7|ﬂ+2))
P o= LR program = addE (P2 (addG x) (addGy), (11, In.2))
| = 1iC instruction addG (n;2(1.), (1. In+2))
€ u= xi= assignment = addE (en+2(i,), (11, Ins2))
| inputx input statement addG (n+2, (I1,++.Ins2)) = addE (n+2, (I3, In+2))
| out put x output statement
\ if ethen Pelse Pfi conditional statement addE 11 SPpip — P2
| whileedoP od while loop addE x@(t, (1,501, -,50n,1"))
| gotol goto statement — if (I==des)) || (I' ==des)
‘ break break statement then (Pn+2 X (aﬁ+2(g)]) dSJ)7 (I , 901, "+, S0n, Il))7
l : label (|>5017"'750n7|/))

Figure 12. A Simple Imperative L anguage else x

The function nlift insert labels of goto statements as new
Let us consider a program in this language with at me€IOTO. terminals between the first and the second (original) terminal in an
The translatiortransG to an SP Term is given below. The basic Sp TermpermT permutes except for the last terminal to adapt to the
idea is; construct an SP Term by ignoring GOTO and memorize series composition. NexaddG adds an edge between the source
their source nodes as additional terminals. Then, scan the SP Termand destination nodes of each goto-statement.

again, and add an edge by the parallel composition at some subternste that if eactblock has at mostn-goto then instead af (the
in which the des_tlnatlon node eventually becomes aterr_nlnal. (Note g um of the numbers of goto) we can similarly transform a control
that each node in a control flow graph becomes a terminal of someyq,y graph to an SP Term i8m. 2.

subterm of an SP Term.)

Let prog be a program written in the language in Fig. 12. As in
Section 2.1, we first preprocepsog to | prog by labeling each line
of prog. Let ((soq,desy),- -, (son,desy)) be the tuple oh-pairs of
the source and destination nodes of each gotpiiag (We assume
so; # des for eachi).

Let I prog’ be a program obtained frohprog by replacing goto
with a null command skip. Themprog is regarded as a flowchart
program in Section 2.1, and

addG (nlift (trans | prog'))
where function®ddG, nli ft, andtrans are defined below.

nlift :: SPy — SPpy2
nlift (e+7 (|17|2)) = (eﬂ+2(17n+2)7 (lj_,SOj_,'“,SOn,lz))
nlift (e_7 (|17|2)) = (eﬂ+2(n+271)7 (lj_,SOj_,'“,SOn,lz))
nlift (27 (|17|2)) = (27 (|l>501>"'>50n7|2))
nlift (S x y, (I1,12))
= (Shy2 (permT (nlift x))

(n+27 (|13$23$37“’780n7|23$))

(n+2> (|1751317503>"'>50n>|27$))

(n+27 (llamla$27“’7SOn—1a|27$))
(nlift y),
(|178013"‘3$ﬂ3|2))
nlift (P2 x vy, (I1,12)
= (Pﬂ+2 (n“ﬁ X) (n“ﬁ y)v (|17SO:|.7“'7SOFI3|2))

